bart-abs-2409-0144-lr-3e-05-bs-4-maxep-6

This model is a fine-tuned version of sshleifer/distilbart-xsum-12-6 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.3498
  • Rouge/rouge1: 0.4687
  • Rouge/rouge2: 0.2167
  • Rouge/rougel: 0.3984
  • Rouge/rougelsum: 0.3997
  • Bertscore/bertscore-precision: 0.8968
  • Bertscore/bertscore-recall: 0.8932
  • Bertscore/bertscore-f1: 0.8948
  • Meteor: 0.4183
  • Gen Len: 37.6273

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 6
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge/rouge1 Rouge/rouge2 Rouge/rougel Rouge/rougelsum Bertscore/bertscore-precision Bertscore/bertscore-recall Bertscore/bertscore-f1 Meteor Gen Len
2.3602 1.0 217 2.0806 0.4443 0.2067 0.3739 0.3745 0.8966 0.8891 0.8927 0.3937 38.2364
1.6559 2.0 434 1.9951 0.4581 0.22 0.3968 0.3973 0.8994 0.8919 0.8955 0.4032 35.1273
1.2943 3.0 651 2.0581 0.4592 0.2156 0.3932 0.3942 0.8995 0.8924 0.8958 0.4071 35.2364
1.0197 4.0 868 2.1312 0.478 0.2304 0.409 0.4111 0.9003 0.8935 0.8967 0.4209 36.1091
0.8117 5.0 1085 2.2532 0.4878 0.2376 0.4181 0.4194 0.9009 0.8945 0.8976 0.4293 35.2636
0.6733 6.0 1302 2.3498 0.4687 0.2167 0.3984 0.3997 0.8968 0.8932 0.8948 0.4183 37.6273

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
5
Safetensors
Model size
306M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for roequitz/bart-abs-2409-0144-lr-3e-05-bs-4-maxep-6

Finetuned
(43)
this model