Edit model card

Baseline Model trained on model_tuning_mindalle9_jsy6zj to apply classification on labels

Metrics of the best model:

accuracy 0.735922

recall_macro 0.631737

precision_macro 0.440117

f1_macro 0.457940

Name: LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000), dtype: float64

See model plot below:

Pipeline(steps=[('easypreprocessor',EasyPreprocessor(types=                 continuous  dirty_float  ...  free_string  useless

temperatures False False ... False False superconditions True False ... False False is_megas False False ... False False feature_0 True False ... False False feature_1 True False ... False False ... ... ... ... ... ... feature_763 True False ... False False feature_764 True False ... False False feature_765 True False ... False False feature_766 True False ... False False feature_767 True False ... False False[771 rows x 7 columns])),('logisticregression',LogisticRegression(C=0.1, class_weight='balanced',max_iter=1000))])

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

Disclaimer: This model is trained with dabl library as a baseline, for better results, use AutoTrain.

Logs of training including the models tried in the process can be found in logs.txt

Downloads last month
Hosted inference API
This model can be loaded on the Inference API on-demand.