Edit model card

image_classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1494
  • Accuracy: 0.6062

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.8347 1.0 10 1.9052 0.3688
1.838 2.0 20 1.7999 0.375
1.7193 3.0 30 1.6869 0.35
1.5873 4.0 40 1.5855 0.4437
1.4919 5.0 50 1.4977 0.475
1.4049 6.0 60 1.4425 0.4875
1.3025 7.0 70 1.4254 0.45
1.238 8.0 80 1.3994 0.475
1.1704 9.0 90 1.3109 0.5312
1.1009 10.0 100 1.3309 0.525
1.0309 11.0 110 1.2941 0.5687
0.9705 12.0 120 1.2750 0.5188
0.9315 13.0 130 1.2402 0.55
0.8894 14.0 140 1.2425 0.5375
0.8374 15.0 150 1.2273 0.525
0.8 16.0 160 1.2454 0.5125
0.7597 17.0 170 1.2445 0.5125
0.7143 18.0 180 1.1750 0.5687
0.6832 19.0 190 1.2456 0.525
0.6573 20.0 200 1.2004 0.5938
0.639 21.0 210 1.1924 0.5563
0.635 22.0 220 1.1257 0.6
0.5982 23.0 230 1.1845 0.575
0.5675 24.0 240 1.2291 0.5625
0.5634 25.0 250 1.1837 0.5687
0.535 26.0 260 1.2384 0.5813
0.5233 27.0 270 1.1911 0.5875
0.529 28.0 280 1.2083 0.5875
0.5141 29.0 290 1.1813 0.5875
0.5166 30.0 300 1.1578 0.5938

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
7
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for riandika/image_classification

Finetuned
(1724)
this model

Evaluation results