Edit model card

Mistral-7B-v0.1_caselaw

This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1640

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 2.0

Training results

Training Loss Epoch Step Validation Loss
1.2324 0.07 50 1.2373
1.2114 0.13 100 1.2199
1.1831 0.2 150 1.2111
1.2027 0.26 200 1.2048
1.1827 0.33 250 1.2001
1.1696 0.39 300 1.1973
1.2186 0.46 350 1.1938
1.1795 0.52 400 1.1919
1.2167 0.59 450 1.1884
1.1992 0.66 500 1.1840
1.2032 0.72 550 1.1824
1.1841 0.79 600 1.1798
1.166 0.85 650 1.1789
1.1641 0.92 700 1.1761
1.1859 0.98 750 1.1752
1.132 1.05 800 1.1736
1.1461 1.12 850 1.1724
1.0965 1.18 900 1.1726
1.1064 1.25 950 1.1724
1.123 1.31 1000 1.1729
1.1079 1.38 1050 1.1695
1.12 1.44 1100 1.1707
1.1288 1.51 1150 1.1693
1.133 1.57 1200 1.1676
1.1647 1.64 1250 1.1693
1.1269 1.71 1300 1.1658
1.1332 1.77 1350 1.1657
1.1276 1.84 1400 1.1681
1.1361 1.9 1450 1.1633
1.1205 1.97 1500 1.1640

Framework versions

  • PEFT 0.7.1
  • Transformers 4.37.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.17.1
  • Tokenizers 0.15.1
Downloads last month
0
Unable to determine this model’s pipeline type. Check the docs .

Adapter for