Model Card of lmqg/mbart-large-cc25-itquad-qg-ae

This model is fine-tuned version of facebook/mbart-large-cc25 for question generation and answer extraction jointly on the lmqg/qg_itquad (dataset_name: default) via lmqg.

Overview

Usage

from lmqg import TransformersQG

# initialize model
model = TransformersQG(language="it", model="lmqg/mbart-large-cc25-itquad-qg-ae")

# model prediction
question_answer_pairs = model.generate_qa("Dopo il 1971 , l' OPEC ha tardato ad adeguare i prezzi per riflettere tale deprezzamento.")
  • With transformers
from transformers import pipeline

pipe = pipeline("text2text-generation", "lmqg/mbart-large-cc25-itquad-qg-ae")

# answer extraction
answer = pipe("generate question: <hl> Dopo il 1971 <hl> , l' OPEC ha tardato ad adeguare i prezzi per riflettere tale deprezzamento.")

# question generation
question = pipe("extract answers: <hl> Il 6 ottobre 1973 , la Siria e l' Egitto, con il sostegno di altre nazioni arabe, lanciarono un attacco a sorpresa su Israele, su Yom Kippur. <hl> Questo rinnovo delle ostilità nel conflitto arabo-israeliano ha liberato la pressione economica sottostante sui prezzi del petrolio. All' epoca, l' Iran era il secondo esportatore mondiale di petrolio e un vicino alleato degli Stati Uniti. Settimane più tardi, lo scià d' Iran ha detto in un' intervista: Naturalmente[il prezzo del petrolio] sta andando a salire Certamente! E come! Avete[Paesi occidentali] aumentato il prezzo del grano che ci vendete del 300 per cento, e lo stesso per zucchero e cemento.")

Evaluation

Score Type Dataset
BERTScore 79.29 default lmqg/qg_itquad
Bleu_1 22.03 default lmqg/qg_itquad
Bleu_2 14.31 default lmqg/qg_itquad
Bleu_3 9.9 default lmqg/qg_itquad
Bleu_4 7.06 default lmqg/qg_itquad
METEOR 16.86 default lmqg/qg_itquad
MoverScore 55.92 default lmqg/qg_itquad
ROUGE_L 20.15 default lmqg/qg_itquad
Score Type Dataset
QAAlignedF1Score (BERTScore) 82.65 default lmqg/qg_itquad
QAAlignedF1Score (MoverScore) 56.14 default lmqg/qg_itquad
QAAlignedPrecision (BERTScore) 81.06 default lmqg/qg_itquad
QAAlignedPrecision (MoverScore) 55.22 default lmqg/qg_itquad
QAAlignedRecall (BERTScore) 84.34 default lmqg/qg_itquad
QAAlignedRecall (MoverScore) 57.13 default lmqg/qg_itquad
Score Type Dataset
AnswerExactMatch 63.88 default lmqg/qg_itquad
AnswerF1Score 76.59 default lmqg/qg_itquad
BERTScore 90.63 default lmqg/qg_itquad
Bleu_1 33.66 default lmqg/qg_itquad
Bleu_2 27.96 default lmqg/qg_itquad
Bleu_3 23.79 default lmqg/qg_itquad
Bleu_4 20.21 default lmqg/qg_itquad
METEOR 44.48 default lmqg/qg_itquad
MoverScore 83.05 default lmqg/qg_itquad
ROUGE_L 46.51 default lmqg/qg_itquad

Training hyperparameters

The following hyperparameters were used during fine-tuning:

  • dataset_path: lmqg/qg_itquad
  • dataset_name: default
  • input_types: ['paragraph_answer', 'paragraph_sentence']
  • output_types: ['question', 'answer']
  • prefix_types: ['qg', 'ae']
  • model: facebook/mbart-large-cc25
  • max_length: 512
  • max_length_output: 32
  • epoch: 8
  • batch: 2
  • lr: 0.0001
  • fp16: False
  • random_seed: 1
  • gradient_accumulation_steps: 32
  • label_smoothing: 0.15

The full configuration can be found at fine-tuning config file.

Citation

@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train research-backup/mbart-large-cc25-itquad-qg-ae

Evaluation results

  • BLEU4 (Question Generation) on lmqg/qg_itquad
    self-reported
    7.060
  • ROUGE-L (Question Generation) on lmqg/qg_itquad
    self-reported
    20.150
  • METEOR (Question Generation) on lmqg/qg_itquad
    self-reported
    16.860
  • BERTScore (Question Generation) on lmqg/qg_itquad
    self-reported
    79.290
  • MoverScore (Question Generation) on lmqg/qg_itquad
    self-reported
    55.920
  • QAAlignedF1Score-BERTScore (Question & Answer Generation (with Gold Answer)) on lmqg/qg_itquad
    self-reported
    82.650
  • QAAlignedRecall-BERTScore (Question & Answer Generation (with Gold Answer)) on lmqg/qg_itquad
    self-reported
    84.340
  • QAAlignedPrecision-BERTScore (Question & Answer Generation (with Gold Answer)) on lmqg/qg_itquad
    self-reported
    81.060
  • QAAlignedF1Score-MoverScore (Question & Answer Generation (with Gold Answer)) on lmqg/qg_itquad
    self-reported
    56.140
  • QAAlignedRecall-MoverScore (Question & Answer Generation (with Gold Answer)) on lmqg/qg_itquad
    self-reported
    57.130