Edit model card

SciFive Pubmed+PMC Large on MedNLI

Introduction

Finetuned SciFive Pubmed+PMC Large model achieved state-of-the-art results on MedNLI (Medical Natural Language Inference)

Paper: SciFive: a text-to-text transformer model for biomedical literature

Authors: Long N. Phan, James T. Anibal, Hieu Tran, Shaurya Chanana, Erol Bahadroglu, Alec Peltekian, Grégoire Altan-Bonnet

How to use

For more details, do check out our Github repo.

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
​
tokenizer = AutoTokenizer.from_pretrained("razent/SciFive-large-Pubmed_PMC-MedNLI")  
model = AutoModelForSeq2SeqLM.from_pretrained("razent/SciFive-large-Pubmed_PMC-MedNLI")
model.cuda()
​
sent_1 = "In the ED, initial VS revealed T 98.9, HR 73, BP 121/90, RR 15, O2 sat 98% on RA."
sent_2 = "The patient is hemodynamically stable"
text =  f"mednli: sentence1: {sent_1} sentence2: {sent_2}"

encoding = tokenizer.encode_plus(text, padding='max_length', max_length=256, return_tensors="pt")
input_ids, attention_masks = encoding["input_ids"].to("cuda"), encoding["attention_mask"].to("cuda")

outputs = model.generate(
    input_ids=input_ids, attention_mask=attention_masks,
    max_length=8,
    early_stopping=True
)

for output in outputs:
    line = tokenizer.decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=True)
    print(line)
Downloads last month
319
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for razent/SciFive-large-Pubmed_PMC-MedNLI

Finetunes
1 model

Datasets used to train razent/SciFive-large-Pubmed_PMC-MedNLI