Edit model card

This is Phind/Phind-CodeLlama-34B-v2 quantized to LMDeploy 4bit AWQ with the following config:

python3 -m lmdeploy.lite.apis.auto_awq \
  --model ./Phind-CodeLlama-34B-v2 \
  --w_bits 4 \
  --w_group_size 128 \
  --work_dir ./quant

Original Model Card:

Phind-CodeLlama-34B-v2

We've fine-tuned Phind-CodeLlama-34B-v1 on an additional 1.5B tokens high-quality programming-related data, achieving 73.8% pass@1 on HumanEval. It's the current state-of-the-art amongst open-source models.

Furthermore, this model is instruction-tuned on the Alpaca/Vicuna format to be steerable and easy-to-use.

More details can be found on our blog post.

Model Details

This model is fine-tuned from Phind-CodeLlama-34B-v1 and achieves 73.8% pass@1 on HumanEval.

Phind-CodeLlama-34B-v2 is multi-lingual and is proficient in Python, C/C++, TypeScript, Java, and more.

Dataset Details

We fined-tuned on a proprietary dataset of 1.5B tokens of high quality programming problems and solutions. This dataset consists of instruction-answer pairs instead of code completion examples, making it structurally different from HumanEval. LoRA was not used -- both models are a native finetune. We used DeepSpeed ZeRO 3 and Flash Attention 2 to train these models in 15 hours on 32 A100-80GB GPUs. We used a sequence length of 4096 tokens.

How to Get Started with the Model

Make sure to install Transformers from the main git branch:

pip install git+https://github.com/huggingface/transformers.git

How to Prompt the Model

This model accepts the Alpaca/Vicuna instruction format.

For example:

### System Prompt
You are an intelligent programming assistant.

### User Message
Implement a linked list in C++

### Assistant
...

How to reproduce HumanEval Results

To reproduce our results:


from transformers import AutoTokenizer, LlamaForCausalLM
from human_eval.data import write_jsonl, read_problems
from tqdm import tqdm

# initialize the model

model_path = "Phind/Phind-CodeLlama-34B-v2"
model = LlamaForCausalLM.from_pretrained(model_path, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_path)

# HumanEval helper

def generate_one_completion(prompt: str):
    tokenizer.pad_token = tokenizer.eos_token
    inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=4096)

    # Generate
    generate_ids = model.generate(inputs.input_ids.to("cuda"), max_new_tokens=384, do_sample=True, top_p=0.75, top_k=40, temperature=0.1)
    completion = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
    completion = completion.replace(prompt, "").split("\n\n\n")[0]

    return completion

# perform HumanEval
problems = read_problems()

num_samples_per_task = 1
samples = [
    dict(task_id=task_id, completion=generate_one_completion(problems[task_id]["prompt"]))
    for task_id in tqdm(problems)
    for _ in range(num_samples_per_task)
]
write_jsonl("samples.jsonl", samples)

# run `evaluate_functional_correctness samples.jsonl` in your HumanEval code sandbox

Bias, Risks, and Limitations

This model has undergone very limited testing. Additional safety testing should be performed before any real-world deployments.

Training details

  • Hardware Type: 32x A100-80GB
  • Hours used: 480 GPU-hours
  • Cloud Provider: AWS
  • Compute Region: us-east-1
Downloads last month
15
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results