cifar10-vit-base-patch16-224-in21k
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the cifar10 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0343
- Accuracy: 0.9916
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.2906 | 1.0 | 5313 | 0.0727 | 0.982 |
0.3249 | 2.0 | 10626 | 0.0549 | 0.9836 |
0.1848 | 3.0 | 15939 | 0.0504 | 0.9873 |
0.2047 | 4.0 | 21252 | 0.0505 | 0.9873 |
0.2532 | 5.0 | 26565 | 0.0454 | 0.9893 |
0.2591 | 6.0 | 31878 | 0.0422 | 0.9888 |
0.133 | 7.0 | 37191 | 0.0368 | 0.9911 |
0.1669 | 8.0 | 42504 | 0.0418 | 0.99 |
0.2412 | 9.0 | 47817 | 0.0350 | 0.9911 |
0.2009 | 10.0 | 53130 | 0.0343 | 0.9916 |
Framework versions
- Transformers 4.38.0
- Pytorch 2.1.2+cu118
- Datasets 2.19.1
- Tokenizers 0.15.2
- Downloads last month
- 21
Model tree for pkr7098/cifar10-vit-base-patch16-224-in21k
Base model
google/vit-base-patch16-224-in21k