longformer-schema-linking

This model is a fine-tuned version of allenai/longformer-base-4096 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1273
  • Accuracy: 0.9652
  • F1: 0.9354
  • Precision: 0.9325
  • Recall: 0.9383

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.4973 0.2251 400 0.2696 0.9303 0.8552 0.9688 0.7654
0.2865 0.4502 800 0.1839 0.9502 0.9020 0.9583 0.8519
0.2234 0.6753 1200 0.1078 0.9635 0.9337 0.9118 0.9568
0.1829 0.9004 1600 0.1148 0.9635 0.9325 0.9268 0.9383
0.1506 1.1255 2000 0.1339 0.9701 0.9448 0.9390 0.9506
0.1315 1.3506 2400 0.1094 0.9652 0.9362 0.9222 0.9506
0.1208 1.5757 2800 0.1312 0.9635 0.9317 0.9375 0.9259
0.1071 1.8008 3200 0.1273 0.9652 0.9354 0.9325 0.9383

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
20
Safetensors
Model size
149M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for paulo037/longformer-schema-linking

Finetuned
(91)
this model