Papers
arxiv:2004.01401

XGLUE: A New Benchmark Dataset for Cross-lingual Pre-training, Understanding and Generation

Published on Apr 3, 2020
Authors:
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,

Abstract

In this paper, we introduce XGLUE, a new benchmark dataset that can be used to train large-scale cross-lingual pre-trained models using multilingual and bilingual corpora and evaluate their performance across a diverse set of cross-lingual tasks. Comparing to GLUE(Wang et al., 2019), which is labeled in English for natural language understanding tasks only, XGLUE has two main advantages: (1) it provides 11 diversified tasks that cover both natural language understanding and generation scenarios; (2) for each task, it provides labeled data in multiple languages. We extend a recent cross-lingual pre-trained model Unicoder(Huang et al., 2019) to cover both understanding and generation tasks, which is evaluated on XGLUE as a strong baseline. We also evaluate the base versions (12-layer) of Multilingual BERT, XLM and XLM-R for comparison.

Community

Sign up or log in to comment

Models citing this paper 3

Datasets citing this paper 5

Browse 5 datasets citing this paper

Spaces citing this paper 3

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.