File size: 2,545 Bytes
f23b221 c4f8886 61e5347 362e1bb 7f973c3 362e1bb dc0a4f1 7f973c3 04de4c3 f23b221 362e1bb dc0a4f1 362e1bb 61e5347 362e1bb 04de4c3 362e1bb f23b221 c910d52 6119308 362e1bb 04de4c3 362e1bb 1af051b d7bdffb a638f69 9a3f69a 362e1bb 7f973c3 04de4c3 362e1bb 84a62f1 362e1bb f23b221 bd59462 362e1bb dcfae61 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: attraction-classifier
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8242677824267782
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# attraction-classifier
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4274
- Accuracy: 0.8243
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 69
- gradient_accumulation_steps: 16
- total_train_batch_size: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 25
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6782 | 1.78 | 15 | 0.5922 | 0.7008 |
| 0.5096 | 3.56 | 30 | 0.5153 | 0.7552 |
| 0.4434 | 5.33 | 45 | 0.4520 | 0.7762 |
| 0.3844 | 7.11 | 60 | 0.4381 | 0.8013 |
| 0.3642 | 8.89 | 75 | 0.4359 | 0.8054 |
| 0.322 | 10.67 | 90 | 0.4086 | 0.8138 |
| 0.2845 | 12.44 | 105 | 0.4111 | 0.8201 |
| 0.2588 | 14.22 | 120 | 0.4100 | 0.8159 |
| 0.2516 | 16.0 | 135 | 0.4122 | 0.8389 |
| 0.2375 | 17.78 | 150 | 0.4085 | 0.8243 |
| 0.2309 | 19.56 | 165 | 0.4149 | 0.8117 |
| 0.2175 | 21.33 | 180 | 0.4274 | 0.8243 |
### Framework versions
- Transformers 4.37.2
- Pytorch 2.0.1+cu117
- Datasets 2.15.0
- Tokenizers 0.15.0
|