File size: 2,545 Bytes
f23b221
c4f8886
61e5347
362e1bb
 
 
 
7f973c3
 
362e1bb
dc0a4f1
7f973c3
 
 
 
 
 
 
 
 
 
 
 
 
04de4c3
f23b221
 
362e1bb
 
 
dc0a4f1
362e1bb
61e5347
362e1bb
04de4c3
 
362e1bb
f23b221
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c910d52
6119308
 
362e1bb
04de4c3
 
362e1bb
1af051b
d7bdffb
a638f69
9a3f69a
362e1bb
 
 
7f973c3
 
04de4c3
 
 
 
 
 
 
 
 
 
 
 
362e1bb
84a62f1
362e1bb
f23b221
bd59462
362e1bb
 
dcfae61
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: attraction-classifier
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.8242677824267782
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# attraction-classifier

This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4274
- Accuracy: 0.8243

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 69
- gradient_accumulation_steps: 16
- total_train_batch_size: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 25
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6782        | 1.78  | 15   | 0.5922          | 0.7008   |
| 0.5096        | 3.56  | 30   | 0.5153          | 0.7552   |
| 0.4434        | 5.33  | 45   | 0.4520          | 0.7762   |
| 0.3844        | 7.11  | 60   | 0.4381          | 0.8013   |
| 0.3642        | 8.89  | 75   | 0.4359          | 0.8054   |
| 0.322         | 10.67 | 90   | 0.4086          | 0.8138   |
| 0.2845        | 12.44 | 105  | 0.4111          | 0.8201   |
| 0.2588        | 14.22 | 120  | 0.4100          | 0.8159   |
| 0.2516        | 16.0  | 135  | 0.4122          | 0.8389   |
| 0.2375        | 17.78 | 150  | 0.4085          | 0.8243   |
| 0.2309        | 19.56 | 165  | 0.4149          | 0.8117   |
| 0.2175        | 21.33 | 180  | 0.4274          | 0.8243   |


### Framework versions

- Transformers 4.37.2
- Pytorch 2.0.1+cu117
- Datasets 2.15.0
- Tokenizers 0.15.0