End of training
Browse files- README.md +17 -19
- model.safetensors +1 -1
README.md
CHANGED
@@ -22,7 +22,7 @@ model-index:
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
-
value: 0.
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -32,8 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss: 0.
|
36 |
-
- Accuracy: 0.
|
37 |
|
38 |
## Model description
|
39 |
|
@@ -56,8 +56,8 @@ The following hyperparameters were used during training:
|
|
56 |
- train_batch_size: 32
|
57 |
- eval_batch_size: 32
|
58 |
- seed: 69
|
59 |
-
- gradient_accumulation_steps:
|
60 |
-
- total_train_batch_size:
|
61 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
- lr_scheduler_type: cosine
|
63 |
- lr_scheduler_warmup_ratio: 0.05
|
@@ -68,20 +68,18 @@ The following hyperparameters were used during training:
|
|
68 |
|
69 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
70 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.2625 | 11.56 | 195 | 0.4642 | 0.7971 |
|
84 |
-
| 0.2287 | 12.44 | 210 | 0.4121 | 0.8159 |
|
85 |
|
86 |
|
87 |
### Framework versions
|
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
+
value: 0.8242677824267782
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
|
33 |
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.4274
|
36 |
+
- Accuracy: 0.8243
|
37 |
|
38 |
## Model description
|
39 |
|
|
|
56 |
- train_batch_size: 32
|
57 |
- eval_batch_size: 32
|
58 |
- seed: 69
|
59 |
+
- gradient_accumulation_steps: 16
|
60 |
+
- total_train_batch_size: 512
|
61 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
- lr_scheduler_type: cosine
|
63 |
- lr_scheduler_warmup_ratio: 0.05
|
|
|
68 |
|
69 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
70 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
71 |
+
| 0.6782 | 1.78 | 15 | 0.5922 | 0.7008 |
|
72 |
+
| 0.5096 | 3.56 | 30 | 0.5153 | 0.7552 |
|
73 |
+
| 0.4434 | 5.33 | 45 | 0.4520 | 0.7762 |
|
74 |
+
| 0.3844 | 7.11 | 60 | 0.4381 | 0.8013 |
|
75 |
+
| 0.3642 | 8.89 | 75 | 0.4359 | 0.8054 |
|
76 |
+
| 0.322 | 10.67 | 90 | 0.4086 | 0.8138 |
|
77 |
+
| 0.2845 | 12.44 | 105 | 0.4111 | 0.8201 |
|
78 |
+
| 0.2588 | 14.22 | 120 | 0.4100 | 0.8159 |
|
79 |
+
| 0.2516 | 16.0 | 135 | 0.4122 | 0.8389 |
|
80 |
+
| 0.2375 | 17.78 | 150 | 0.4085 | 0.8243 |
|
81 |
+
| 0.2309 | 19.56 | 165 | 0.4149 | 0.8117 |
|
82 |
+
| 0.2175 | 21.33 | 180 | 0.4274 | 0.8243 |
|
|
|
|
|
83 |
|
84 |
|
85 |
### Framework versions
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 343223968
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4af3317e723148f0af2f8102318ced1bc7e05a9367f11f93c23486795ad0d91c
|
3 |
size 343223968
|