ongkn commited on
Commit
9a3f69a
1 Parent(s): 52da8a0

End of training

Browse files
Files changed (1) hide show
  1. README.md +9 -13
README.md CHANGED
@@ -22,7 +22,7 @@ model-index:
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
- value: 0.7902542372881356
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -32,8 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
32
 
33
  This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
34
  It achieves the following results on the evaluation set:
35
- - Loss: 0.5746
36
- - Accuracy: 0.7903
37
 
38
  ## Model description
39
 
@@ -56,25 +56,21 @@ The following hyperparameters were used during training:
56
  - train_batch_size: 32
57
  - eval_batch_size: 32
58
  - seed: 69
 
 
59
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
  - lr_scheduler_type: linear
61
  - lr_scheduler_warmup_ratio: 0.05
62
  - num_epochs: 15
 
63
 
64
  ### Training results
65
 
66
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
67
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
68
- | 0.4968 | 1.13 | 150 | 0.5187 | 0.7627 |
69
- | 0.4266 | 2.26 | 300 | 0.4863 | 0.7627 |
70
- | 0.3521 | 3.38 | 450 | 0.5066 | 0.7627 |
71
- | 0.3407 | 4.51 | 600 | 0.4736 | 0.7860 |
72
- | 0.2895 | 5.64 | 750 | 0.5043 | 0.7712 |
73
- | 0.2595 | 6.77 | 900 | 0.6222 | 0.7669 |
74
- | 0.2132 | 7.89 | 1050 | 0.4935 | 0.8008 |
75
- | 0.2156 | 9.02 | 1200 | 0.5229 | 0.7924 |
76
- | 0.192 | 10.15 | 1350 | 0.5168 | 0.7881 |
77
- | 0.1329 | 11.28 | 1500 | 0.5746 | 0.7903 |
78
 
79
 
80
  ### Framework versions
 
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
+ value: 0.8199152542372882
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
32
 
33
  This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
34
  It achieves the following results on the evaluation set:
35
+ - Loss: 0.4752
36
+ - Accuracy: 0.8199
37
 
38
  ## Model description
39
 
 
56
  - train_batch_size: 32
57
  - eval_batch_size: 32
58
  - seed: 69
59
+ - gradient_accumulation_steps: 4
60
+ - total_train_batch_size: 128
61
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
  - lr_scheduler_type: linear
63
  - lr_scheduler_warmup_ratio: 0.05
64
  - num_epochs: 15
65
+ - mixed_precision_training: Native AMP
66
 
67
  ### Training results
68
 
69
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
70
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
71
+ | 0.3876 | 4.51 | 150 | 0.4823 | 0.7542 |
72
+ | 0.229 | 9.02 | 300 | 0.4535 | 0.8157 |
73
+ | 0.1884 | 13.53 | 450 | 0.4752 | 0.8199 |
 
 
 
 
 
 
 
74
 
75
 
76
  ### Framework versions