End of training
Browse files
README.md
CHANGED
@@ -22,7 +22,7 @@ model-index:
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
-
value: 0.
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -32,8 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss: 0.
|
36 |
-
- Accuracy: 0.
|
37 |
|
38 |
## Model description
|
39 |
|
@@ -56,25 +56,21 @@ The following hyperparameters were used during training:
|
|
56 |
- train_batch_size: 32
|
57 |
- eval_batch_size: 32
|
58 |
- seed: 69
|
|
|
|
|
59 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
- lr_scheduler_type: linear
|
61 |
- lr_scheduler_warmup_ratio: 0.05
|
62 |
- num_epochs: 15
|
|
|
63 |
|
64 |
### Training results
|
65 |
|
66 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
67 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.3407 | 4.51 | 600 | 0.4736 | 0.7860 |
|
72 |
-
| 0.2895 | 5.64 | 750 | 0.5043 | 0.7712 |
|
73 |
-
| 0.2595 | 6.77 | 900 | 0.6222 | 0.7669 |
|
74 |
-
| 0.2132 | 7.89 | 1050 | 0.4935 | 0.8008 |
|
75 |
-
| 0.2156 | 9.02 | 1200 | 0.5229 | 0.7924 |
|
76 |
-
| 0.192 | 10.15 | 1350 | 0.5168 | 0.7881 |
|
77 |
-
| 0.1329 | 11.28 | 1500 | 0.5746 | 0.7903 |
|
78 |
|
79 |
|
80 |
### Framework versions
|
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
+
value: 0.8199152542372882
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
|
33 |
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.4752
|
36 |
+
- Accuracy: 0.8199
|
37 |
|
38 |
## Model description
|
39 |
|
|
|
56 |
- train_batch_size: 32
|
57 |
- eval_batch_size: 32
|
58 |
- seed: 69
|
59 |
+
- gradient_accumulation_steps: 4
|
60 |
+
- total_train_batch_size: 128
|
61 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
- lr_scheduler_type: linear
|
63 |
- lr_scheduler_warmup_ratio: 0.05
|
64 |
- num_epochs: 15
|
65 |
+
- mixed_precision_training: Native AMP
|
66 |
|
67 |
### Training results
|
68 |
|
69 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
70 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
71 |
+
| 0.3876 | 4.51 | 150 | 0.4823 | 0.7542 |
|
72 |
+
| 0.229 | 9.02 | 300 | 0.4535 | 0.8157 |
|
73 |
+
| 0.1884 | 13.53 | 450 | 0.4752 | 0.8199 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
|
76 |
### Framework versions
|