Edit model card

ohss117/bert-finetuned-ner_v2

This model is a fine-tuned version of bert-base-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0003
  • Validation Loss: 0.0919
  • Epoch: 21

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 21950, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: mixed_float16

Training results

Train Loss Validation Loss Epoch
0.1785 0.0609 0
0.0493 0.0581 1
0.0288 0.0621 2
0.0187 0.0581 3
0.0141 0.0630 4
0.0096 0.0665 5
0.0060 0.0735 6
0.0064 0.0774 7
0.0055 0.0717 8
0.0028 0.0796 9
0.0020 0.0913 10
0.0024 0.0787 11
0.0023 0.0877 12
0.0024 0.0793 13
0.0010 0.0873 14
0.0008 0.0874 15
0.0013 0.0902 16
0.0007 0.0925 17
0.0005 0.0957 18
0.0005 0.0914 19
0.0004 0.0926 20
0.0003 0.0919 21

Framework versions

  • Transformers 4.25.1
  • TensorFlow 2.10.1
  • Datasets 2.8.0
  • Tokenizers 0.13.2
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.