File size: 8,885 Bytes
3f4d71a
bd45ca1
 
381651c
bd45ca1
 
 
 
381651c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f4d71a
bd45ca1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f722f66
 
bd45ca1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f722f66
e378a80
f722f66
 
 
 
 
381651c
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
---
language:
- en
license: apache-2.0
tags:
- nvidia
- code
- math
datasets:
- nvidia/OpenMathInstruct-1
base_model:
- mistralai/Mistral-7B-v0.1
model-index:
- name: OpenMath-Mistral-7B-v0.1-hf
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 59.39
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nvidia/OpenMath-Mistral-7B-v0.1-hf
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 81.78
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nvidia/OpenMath-Mistral-7B-v0.1-hf
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 59.34
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nvidia/OpenMath-Mistral-7B-v0.1-hf
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 46.13
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nvidia/OpenMath-Mistral-7B-v0.1-hf
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 77.27
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nvidia/OpenMath-Mistral-7B-v0.1-hf
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 0.08
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nvidia/OpenMath-Mistral-7B-v0.1-hf
      name: Open LLM Leaderboard
---


# OpenMath-Mistral-7B-v0.1-hf

OpenMath models were designed to solve mathematical problems by integrating text-based reasoning with code blocks
executed by Python interpreter. The models were trained on [OpenMathInstruct-1](https://huggingface.co/datasets/nvidia/OpenMathInstruct-1),
a math instruction tuning dataset with 1.8M problem-solution pairs generated using permissively licensed
[Mixtral-8x7B](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1) model.

<table border="1">
  <tr>
    <td></td>
    <td colspan="2" style="text-align: center;">greedy</td>
    <td colspan="2" style="text-align: center;">majority@50</td>
  </tr>
  <tr>
    <td style="text-align: center;">model</td>
    <td style="text-align: center;">GSM8K</td>
    <td style="text-align: center;">MATH</td>
    <td style="text-align: center;">GMS8K</td>
    <td style="text-align: center;">MATH</td>
  </tr>
  <tr>
    <td style="text-align: right;">OpenMath-CodeLlama-7B (<a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-7b-Python">nemo</a> | <a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-7b-Python-hf">HF</a>)</td>
    <td style="text-align: center;">75.9</td>
    <td style="text-align: center;">43.6</td>
    <td style="text-align: center;">84.8</td>
    <td style="text-align: center;">55.6</td>
  </tr>
  <tr>
    <td style="text-align: right;">OpenMath-Mistral-7B (<a href="https://huggingface.co/nvidia/OpenMath-Mistral-7B-v0.1">nemo</a> | <a href="https://huggingface.co/nvidia/OpenMath-Mistral-7B-v0.1-hf">HF</a>)</td>
    <td style="text-align: center;">80.2</td>
    <td style="text-align: center;">44.5</td>
    <td style="text-align: center;">86.9</td>
    <td style="text-align: center;">57.2</td>
  </tr>
  <tr>
    <td style="text-align: right;">OpenMath-CodeLlama-13B (<a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-13b-Python">nemo</a> | <a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-13b-Python-hf">HF</a>)</td>
    <td style="text-align: center;">78.8</td>
    <td style="text-align: center;">45.5</td>
    <td style="text-align: center;">86.8</td>
    <td style="text-align: center;">57.6</td>
  </tr>
  <tr>
    <td style="text-align: right;">OpenMath-CodeLlama-34B (<a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-34b-Python">nemo</a> | <a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-34b-Python-hf">HF</a>)</td>
    <td style="text-align: center;">80.7</td>
    <td style="text-align: center;">48.3</td>
    <td style="text-align: center;">88.0</td>
    <td style="text-align: center;">60.2</td>
  </tr>
  <tr>
    <td style="text-align: right;">OpenMath-Llama2-70B (<a href="https://huggingface.co/nvidia/OpenMath-Llama-2-70b">nemo</a> | <a href="https://huggingface.co/nvidia/OpenMath-Llama-2-70b-hf">HF</a>)</td>
    <td style="text-align: center;"><b>84.7</b></td>
    <td style="text-align: center;">46.3</td>
    <td style="text-align: center;">90.1</td>
    <td style="text-align: center;">58.3</td>
  </tr>
  <tr>
    <td style="text-align: right;">OpenMath-CodeLlama-70B (<a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-70b-Python">nemo</a> | <a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-70b-Python-hf">HF</a>)</td>
    <td style="text-align: center;">84.6</td>
    <td style="text-align: center;"><b>50.7</b></td>
    <td style="text-align: center;"><b>90.8</b></td>
    <td style="text-align: center;"><b>60.4</b></td>
  </tr>
</table>

The pipeline we used to produce these models is fully open-sourced!

- [Code](https://github.com/Kipok/NeMo-Skills)
- [Models](https://huggingface.co/collections/nvidia/openmath-65c5619de2ba059be0775014)
- [Dataset](https://huggingface.co/datasets/nvidia/OpenMathInstruct-1)

See our [paper](https://arxiv.org/abs/2402.10176) for more details!

# How to use the models?

Try to [run inference with our models](https://github.com/Kipok/NeMo-Skills/blob/main/docs/inference.md) with just a few commands!

# Reproducing our results

We provide [all instructions](https://github.com/Kipok/NeMo-Skills/blob/main/docs/reproducing-results.md) to fully reproduce our results.

# Improving other models

To improve other models or to learn more about our code, read through the docs below.

- [NeMo-Skills Pipeline](https://github.com/Kipok/NeMo-Skills)
    - [Generating synthetic data](https://github.com/Kipok/NeMo-Skills/blob/main/docs/synthetic-data-generation.md)
    - [Finetuning models](https://github.com/Kipok/NeMo-Skills/blob/main/docs/finetuning.md)
    - [Evaluating models](https://github.com/Kipok/NeMo-Skills/blob/main/docs/evaluation.md)

In our pipeline we use [NVIDIA NeMo](https://www.nvidia.com/en-us/ai-data-science/generative-ai/nemo-framework/),
an end-to-end, cloud-native framework to build, customize, and deploy generative AI models anywhere.
It includes training and inferencing frameworks, guardrailing toolkits, data curation tools, and pretrained models,
offering enterprises an easy, cost-effective, and fast way to adopt generative AI.

# Citation

If you find our work useful, please consider citing us!

```bibtex
@article{toshniwal2024openmath,
  title   = {OpenMathInstruct-1: A 1.8 Million Math Instruction Tuning Dataset},
  author  = {Shubham Toshniwal and Ivan Moshkov and Sean Narenthiran and Daria Gitman and Fei Jia and Igor Gitman},
  year    = {2024},
  journal = {arXiv preprint arXiv: Arxiv-2402.10176}
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_nvidia__OpenMath-Mistral-7B-v0.1-hf)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |54.00|
|AI2 Reasoning Challenge (25-Shot)|59.39|
|HellaSwag (10-Shot)              |81.78|
|MMLU (5-Shot)                    |59.34|
|TruthfulQA (0-shot)              |46.13|
|Winogrande (5-shot)              |77.27|
|GSM8k (5-shot)                   | 0.08|