Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,110 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- nvidia/OpenMathInstruct-1
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
tags:
|
8 |
+
- nvidia
|
9 |
+
- code
|
10 |
+
- math
|
11 |
---
|
12 |
+
|
13 |
+
|
14 |
+
# OpenMath-Mistral-7B-v0.1-hf
|
15 |
+
|
16 |
+
OpenMath models were designed to solve mathematical problems by integrating text-based reasoning with code blocks
|
17 |
+
executed by Python interpreter. The models were trained on [OpenMathInstruct-1](https://huggingface.co/datasets/nvidia/OpenMathInstruct-1),
|
18 |
+
a math instruction tuning dataset with 1.8M problem-solution pairs generated using permissively licensed
|
19 |
+
[Mixtral-8x7B](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1) model.
|
20 |
+
|
21 |
+
<table border="1">
|
22 |
+
<tr>
|
23 |
+
<td></td>
|
24 |
+
<td colspan="2" style="text-align: center;">greedy</td>
|
25 |
+
<td colspan="2" style="text-align: center;">majority@50</td>
|
26 |
+
</tr>
|
27 |
+
<tr>
|
28 |
+
<td style="text-align: center;">model</td>
|
29 |
+
<td style="text-align: center;">GSM8K</td>
|
30 |
+
<td style="text-align: center;">MATH</td>
|
31 |
+
<td style="text-align: center;">GMS8K</td>
|
32 |
+
<td style="text-align: center;">MATH</td>
|
33 |
+
</tr>
|
34 |
+
<tr>
|
35 |
+
<td style="text-align: right;">OpenMath-CodeLlama-7B (<a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-7b-Python">nemo</a> | <a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-7b-Python-hf">HF</a>)</td>
|
36 |
+
<td style="text-align: center;">75.9</td>
|
37 |
+
<td style="text-align: center;">43.6</td>
|
38 |
+
<td style="text-align: center;">84.8</td>
|
39 |
+
<td style="text-align: center;">55.6</td>
|
40 |
+
</tr>
|
41 |
+
<tr>
|
42 |
+
<td style="text-align: right;">OpenMath-Mistral-7B (<a href="https://huggingface.co/nvidia/OpenMath-Mistral-7B-v0.1">nemo</a> | <a href="https://huggingface.co/nvidia/OpenMath-Mistral-7B-v0.1-hf">HF</a>)</td>
|
43 |
+
<td style="text-align: center;">80.2</td>
|
44 |
+
<td style="text-align: center;">44.5</td>
|
45 |
+
<td style="text-align: center;">86.9</td>
|
46 |
+
<td style="text-align: center;">57.2</td>
|
47 |
+
</tr>
|
48 |
+
<tr>
|
49 |
+
<td style="text-align: right;">OpenMath-CodeLlama-13B (<a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-13b-Python">nemo</a> | <a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-13b-Python-hf">HF</a>)</td>
|
50 |
+
<td style="text-align: center;">78.8</td>
|
51 |
+
<td style="text-align: center;">45.5</td>
|
52 |
+
<td style="text-align: center;">86.8</td>
|
53 |
+
<td style="text-align: center;">57.6</td>
|
54 |
+
</tr>
|
55 |
+
<tr>
|
56 |
+
<td style="text-align: right;">OpenMath-CodeLlama-34B (<a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-34b-Python">nemo</a> | <a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-34b-Python-hf">HF</a>)</td>
|
57 |
+
<td style="text-align: center;">80.7</td>
|
58 |
+
<td style="text-align: center;">48.3</td>
|
59 |
+
<td style="text-align: center;">88.0</td>
|
60 |
+
<td style="text-align: center;">60.2</td>
|
61 |
+
</tr>
|
62 |
+
<tr>
|
63 |
+
<td style="text-align: right;">OpenMath-Llama2-70B (<a href="https://huggingface.co/nvidia/OpenMath-Llama-2-70b">nemo</a> | <a href="https://huggingface.co/nvidia/OpenMath-Llama-2-70b-hf">HF</a>)</td>
|
64 |
+
<td style="text-align: center;"><b>84.7</b></td>
|
65 |
+
<td style="text-align: center;">46.3</td>
|
66 |
+
<td style="text-align: center;">90.1</td>
|
67 |
+
<td style="text-align: center;">58.3</td>
|
68 |
+
</tr>
|
69 |
+
<tr>
|
70 |
+
<td style="text-align: right;">OpenMath-CodeLlama-70B (<a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-70b-Python">nemo</a> | <a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-70b-Python-hf">HF</a>)</td>
|
71 |
+
<td style="text-align: center;">84.6</td>
|
72 |
+
<td style="text-align: center;"><b>50.7</b></td>
|
73 |
+
<td style="text-align: center;"><b>90.8</b></td>
|
74 |
+
<td style="text-align: center;"><b>60.4</b></td>
|
75 |
+
</tr>
|
76 |
+
</table>
|
77 |
+
|
78 |
+
The pipeline we used to produce these models is fully open-sourced!
|
79 |
+
|
80 |
+
- [Code](https://github.com/Kipok/NeMo-Skills)
|
81 |
+
- [Models](https://huggingface.co/collections/nvidia/openmath-65c5619de2ba059be0775014)
|
82 |
+
- [Dataset](https://huggingface.co/datasets/nvidia/OpenMathInstruct-1)
|
83 |
+
|
84 |
+
# How to use the models?
|
85 |
+
|
86 |
+
Try to [run inference with our models](https://github.com/Kipok/NeMo-Skills/blob/main/docs/inference.md) with just a few commands!
|
87 |
+
|
88 |
+
# Reproducing our results
|
89 |
+
|
90 |
+
We provide [all instructions](https://github.com/Kipok/NeMo-Skills/blob/main/docs/reproducing-results.md) to fully reproduce our results.
|
91 |
+
|
92 |
+
# Improving other models
|
93 |
+
|
94 |
+
To improve other models or to learn more about our code, read through the docs below.
|
95 |
+
|
96 |
+
- [NeMo-Skills Pipeline](https://github.com/Kipok/NeMo-Skills)
|
97 |
+
- [Generating synthetic data](https://github.com/Kipok/NeMo-Skills/blob/main/docs/synthetic-data-generation.md)
|
98 |
+
- [Finetuning models](https://github.com/Kipok/NeMo-Skills/blob/main/docs/finetuning.md)
|
99 |
+
- [Evaluating models](https://github.com/Kipok/NeMo-Skills/blob/main/docs/evaluation.md)
|
100 |
+
|
101 |
+
In our pipeline we use [NVIDIA NeMo](https://www.nvidia.com/en-us/ai-data-science/generative-ai/nemo-framework/),
|
102 |
+
an end-to-end, cloud-native framework to build, customize, and deploy generative AI models anywhere.
|
103 |
+
It includes training and inferencing frameworks, guardrailing toolkits, data curation tools, and pretrained models,
|
104 |
+
offering enterprises an easy, cost-effective, and fast way to adopt generative AI.
|
105 |
+
|
106 |
+
# Citation
|
107 |
+
|
108 |
+
If you find our work useful, please consider citing us!
|
109 |
+
|
110 |
+
TODO
|