SDXL LoRA DreamBooth - multimodalart/mouse-public-domain-rank16

Prompt
A <s0><s1> mouse cartoon piloting a boat
Prompt
A <s0><s1> mouse cartoon piloting a boat
Prompt
A <s0><s1> mouse cartoon pulling the boat's horn
Prompt
A <s0><s1> mouse cartoon zoom out piloting a boat
Prompt
A <s0><s1> mouse cartoon mad at a bucket
Prompt
A <s0><s1> mouse cartoon opening a dog's mouth
Prompt
A <s0><s1> mouse cartoon dancing in the kitchen
Prompt
A <s0><s1> mouse cartoon looking at a cow
Prompt
A <s0><s1> mouse cartoon plahying musical instruments
Prompt
A <s0><s1> mouse cartoon sitting down

Model description

These are multimodalart/mouse-public-domain-rank16 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.

Download model

Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke

Use it with the 🧨 diffusers library

from diffusers import AutoPipelineForText2Image
import torch
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
        
pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('multimodalart/mouse-public-domain-rank16', weight_name='pytorch_lora_weights.safetensors')
embedding_path = hf_hub_download(repo_id='multimodalart/mouse-public-domain-rank16', filename='mouse-public-domain-rank16_emb.safetensors' repo_type="model")
state_dict = load_file(embedding_path)
pipeline.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer)
pipeline.load_textual_inversion(state_dict["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2)
        
image = pipeline('A <s0><s1> mouse cartoon ').images[0]

For more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers

Trigger words

To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens:

to trigger concept TOK → use <s0><s1> in your prompt

Details

All Files & versions.

The weights were trained using 🧨 diffusers Advanced Dreambooth Training Script.

LoRA for the text encoder was enabled. False.

Pivotal tuning was enabled: True.

Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.

Downloads last month
4
Inference API
Examples

Model tree for multimodalart/mouse-public-domain-rank16

Adapter
(5152)
this model

Space using multimodalart/mouse-public-domain-rank16 1