Edit model card

hubert-rinnna-jp-jdrtsp-fw07sp-13

This model is a fine-tuned version of rinna/japanese-hubert-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1606
  • Wer: 0.3004
  • Cer: 0.1786

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Wer Cer
1.352 1.0 404 0.9913 0.6021 0.4479
0.9044 2.0 808 0.5053 0.4261 0.2774
0.9001 3.0 1212 0.8458 0.4848 0.3267
0.8425 4.0 1616 0.5311 0.4577 0.3053
0.8408 5.0 2020 0.4328 0.4075 0.2776
0.7759 6.0 2424 0.4736 0.4394 0.3363
0.7228 7.0 2828 0.4667 0.4173 0.2862
0.6755 8.0 3232 0.4190 0.4114 0.2611
0.634 9.0 3636 0.4252 0.3993 0.2612
0.6267 10.0 4040 0.3275 0.3734 0.2362
0.6199 11.0 4444 0.2786 0.3543 0.2222
0.5396 12.0 4848 0.2851 0.3501 0.2146
0.5343 13.0 5252 0.2527 0.3448 0.2106
0.5488 14.0 5656 0.2725 0.3431 0.2100
0.4606 15.0 6060 0.2293 0.3259 0.1962
0.4229 16.0 6464 0.2043 0.3172 0.1914
0.4078 17.0 6868 0.1891 0.3128 0.1862
0.4017 18.0 7272 0.1785 0.3075 0.1833
0.3618 19.0 7676 0.1673 0.3035 0.1803
0.3739 20.0 8080 0.1606 0.3004 0.1786

Framework versions

  • Transformers 4.34.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
7
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mskhattori/hubert-rinnna-jp-jdrtsp-fw07sp-13

Finetuned
(9)
this model