test commit using https://huggingface.co/cekal/mpt-7b-peft-compatible/blob/main/modeling_mpt.py
#73
by
lbwavebo
- opened
- modeling_mpt.py +127 -54
modeling_mpt.py
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
"""A simple, flexible implementation of a GPT model.
|
2 |
-
|
3 |
Inspired by https://github.com/karpathy/minGPT/blob/master/mingpt/model.py
|
4 |
"""
|
5 |
import math
|
@@ -25,16 +24,24 @@ except:
|
|
25 |
pass
|
26 |
Tokenizer = Union[PreTrainedTokenizer, PreTrainedTokenizerFast]
|
27 |
|
|
|
28 |
class MPTPreTrainedModel(PreTrainedModel):
|
29 |
config_class = MPTConfig
|
30 |
base_model_prefix = 'model'
|
31 |
-
_no_split_modules = [
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
class MPTModel(MPTPreTrainedModel):
|
34 |
|
35 |
def __init__(self, config: MPTConfig):
|
36 |
config._validate_config()
|
37 |
super().__init__(config)
|
|
|
38 |
self.attn_impl = config.attn_config['attn_impl']
|
39 |
self.prefix_lm = config.attn_config['prefix_lm']
|
40 |
self.attn_uses_sequence_id = config.attn_config['attn_uses_sequence_id']
|
@@ -84,11 +91,14 @@ class MPTModel(MPTPreTrainedModel):
|
|
84 |
self.wte = value
|
85 |
|
86 |
@torch.no_grad()
|
87 |
-
def _attn_bias(self, device, dtype, attention_mask: Optional[torch.ByteTensor]=
|
|
|
88 |
if not self._attn_bias_initialized:
|
89 |
if self.attn_bias_shape:
|
90 |
self.attn_bias = torch.zeros(self.attn_bias_shape, device=device, dtype=dtype)
|
91 |
-
self.attn_bias = build_attn_bias(self.attn_impl, self.attn_bias, self.config.n_heads,
|
|
|
|
|
92 |
self._attn_bias_initialized = True
|
93 |
if self.attn_impl == 'flash':
|
94 |
return (self.attn_bias, attention_mask)
|
@@ -108,7 +118,7 @@ class MPTModel(MPTPreTrainedModel):
|
|
108 |
attn_bias = torch.zeros((1, 1, 1, s_k), device=device, dtype=dtype)
|
109 |
else:
|
110 |
_s_k = max(0, attn_bias.size(-1) - s_k)
|
111 |
-
attn_bias = attn_bias[:, :, :,
|
112 |
if prefix_mask is not None and attention_mask.shape != prefix_mask.shape:
|
113 |
raise ValueError(f'attention_mask shape={attention_mask.shape} ' + f'and prefix_mask shape={prefix_mask.shape} are not equal.')
|
114 |
min_val = torch.finfo(attn_bias.dtype).min
|
@@ -118,12 +128,15 @@ class MPTModel(MPTPreTrainedModel):
|
|
118 |
def _apply_prefix_mask(self, attn_bias: torch.Tensor, prefix_mask: torch.Tensor):
|
119 |
(s_k, s_q) = attn_bias.shape[-2:]
|
120 |
if s_k != self.config.max_seq_len or s_q != self.config.max_seq_len:
|
121 |
-
raise ValueError(
|
|
|
122 |
seq_len = prefix_mask.shape[-1]
|
123 |
if seq_len > self.config.max_seq_len:
|
124 |
raise ValueError(f'prefix_mask sequence length cannot exceed max_seq_len={self.config.max_seq_len}')
|
125 |
attn_bias = attn_bias[..., :seq_len, :seq_len]
|
126 |
-
causal = torch.tril(torch.ones((seq_len, seq_len), dtype=torch.bool, device=prefix_mask.device)).view(1, 1,
|
|
|
|
|
127 |
prefix = prefix_mask.view(-1, 1, 1, seq_len)
|
128 |
cannot_attend = ~torch.logical_or(causal, prefix.bool())
|
129 |
min_val = torch.finfo(attn_bias.dtype).min
|
@@ -135,52 +148,85 @@ class MPTModel(MPTPreTrainedModel):
|
|
135 |
if seq_len > self.config.max_seq_len:
|
136 |
raise ValueError(f'sequence_id sequence length cannot exceed max_seq_len={self.config.max_seq_len}')
|
137 |
attn_bias = attn_bias[..., :seq_len, :seq_len]
|
138 |
-
cannot_attend = torch.logical_not(
|
|
|
139 |
min_val = torch.finfo(attn_bias.dtype).min
|
140 |
attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
|
141 |
return attn_bias
|
142 |
|
143 |
-
def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]
|
|
|
|
|
|
|
|
|
144 |
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
145 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
if attention_mask is not None:
|
147 |
attention_mask = attention_mask.bool()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
if prefix_mask is not None:
|
149 |
prefix_mask = prefix_mask.bool()
|
150 |
if not return_dict:
|
151 |
raise NotImplementedError('return_dict False is not implemented yet for MPT')
|
152 |
if output_attentions:
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
raise NotImplementedError('MPT does not support training with left padding.')
|
157 |
if self.prefix_lm and prefix_mask is None:
|
158 |
raise ValueError('prefix_mask is a required argument when MPT is configured with prefix_lm=True.')
|
159 |
-
if inputs_embeds is not None:
|
160 |
-
raise NotImplementedError('inputs_embeds is not implemented for MPT.')
|
161 |
if self.training:
|
162 |
if self.attn_uses_sequence_id and sequence_id is None:
|
163 |
-
raise ValueError(
|
|
|
164 |
elif self.attn_uses_sequence_id is False and sequence_id is not None:
|
165 |
-
warnings.warn(
|
166 |
-
|
|
|
167 |
assert S <= self.config.max_seq_len, f'Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}'
|
168 |
-
tok_emb = self.wte(input_ids)
|
169 |
if self.alibi:
|
170 |
x = tok_emb
|
171 |
else:
|
172 |
past_position = 0
|
173 |
if past_key_values is not None:
|
174 |
if len(past_key_values) != self.config.n_layers:
|
175 |
-
raise ValueError(
|
|
|
176 |
past_position = past_key_values[0][0].size(1)
|
177 |
-
if self.attn_impl == 'torch':
|
178 |
-
past_position = past_key_values[0][0].size(3)
|
179 |
if S + past_position > self.config.max_seq_len:
|
180 |
-
raise ValueError(
|
|
|
181 |
pos = torch.arange(past_position, S + past_position, dtype=torch.long, device=input_ids.device).unsqueeze(0)
|
182 |
-
if attention_mask is not None:
|
183 |
-
pos = torch.clamp(pos - torch.cumsum((~attention_mask).to(torch.int32), dim=1)[:, past_position:],
|
|
|
184 |
pos_emb = self.wpe(pos)
|
185 |
x = tok_emb + pos_emb
|
186 |
if self.embedding_fraction == 1:
|
@@ -189,31 +235,49 @@ class MPTModel(MPTPreTrainedModel):
|
|
189 |
x_shrunk = x * self.embedding_fraction + x.detach() * (1 - self.embedding_fraction)
|
190 |
assert isinstance(self.emb_drop, nn.Module)
|
191 |
x = self.emb_drop(x_shrunk)
|
192 |
-
(attn_bias, attention_mask) = self._attn_bias(device=x.device, dtype=
|
|
|
193 |
if use_cache and past_key_values is None:
|
194 |
past_key_values = [() for _ in range(self.config.n_layers)]
|
|
|
195 |
all_hidden_states = () if output_hidden_states else None
|
196 |
-
all_self_attns = () if output_attentions else None
|
197 |
for (b_idx, block) in enumerate(self.blocks):
|
198 |
if output_hidden_states:
|
199 |
assert all_hidden_states is not None
|
200 |
all_hidden_states = all_hidden_states + (x,)
|
201 |
past_key_value = past_key_values[b_idx] if past_key_values is not None else None
|
202 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
if past_key_values is not None:
|
204 |
past_key_values[b_idx] = past_key_value
|
205 |
-
if output_attentions:
|
206 |
-
assert all_self_attns is not None
|
207 |
-
all_self_attns = all_self_attns + (attn_weights,)
|
208 |
x = self.norm_f(x)
|
209 |
-
|
210 |
-
|
211 |
-
all_hidden_states = all_hidden_states + (x,)
|
212 |
-
return BaseModelOutputWithPast(last_hidden_state=x, past_key_values=past_key_values, hidden_states=all_hidden_states, attentions=all_self_attns)
|
213 |
|
214 |
def param_init_fn(self, module):
|
215 |
init_fn_name = self.config.init_config['name']
|
216 |
-
MODEL_INIT_REGISTRY[init_fn_name](module=module, n_layers=self.config.n_layers, d_model=self.config.d_model,
|
|
|
217 |
|
218 |
def fsdp_wrap_fn(self, module):
|
219 |
return isinstance(module, MPTBlock)
|
@@ -221,19 +285,14 @@ class MPTModel(MPTPreTrainedModel):
|
|
221 |
def activation_checkpointing_fn(self, module):
|
222 |
return isinstance(module, MPTBlock)
|
223 |
|
|
|
224 |
class MPTForCausalLM(MPTPreTrainedModel):
|
225 |
|
226 |
def __init__(self, config: MPTConfig):
|
227 |
super().__init__(config)
|
228 |
if not config.tie_word_embeddings:
|
229 |
raise ValueError('MPTForCausalLM only supports tied word embeddings')
|
230 |
-
print(f'Instantiating an MPTForCausalLM model from {__file__}')
|
231 |
self.transformer = MPTModel(config)
|
232 |
-
for child in self.transformer.children():
|
233 |
-
if isinstance(child, torch.nn.ModuleList):
|
234 |
-
continue
|
235 |
-
if isinstance(child, torch.nn.Module):
|
236 |
-
child._fsdp_wrap = True
|
237 |
self.logit_scale = None
|
238 |
if config.logit_scale is not None:
|
239 |
logit_scale = config.logit_scale
|
@@ -241,7 +300,8 @@ class MPTForCausalLM(MPTPreTrainedModel):
|
|
241 |
if logit_scale == 'inv_sqrt_d_model':
|
242 |
logit_scale = 1 / math.sqrt(config.d_model)
|
243 |
else:
|
244 |
-
raise ValueError(
|
|
|
245 |
self.logit_scale = logit_scale
|
246 |
|
247 |
def get_input_embeddings(self):
|
@@ -262,27 +322,39 @@ class MPTForCausalLM(MPTPreTrainedModel):
|
|
262 |
def get_decoder(self):
|
263 |
return self.transformer
|
264 |
|
265 |
-
def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]
|
|
|
|
|
|
|
|
|
|
|
266 |
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
267 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
|
|
|
|
|
|
|
|
272 |
if self.logit_scale is not None:
|
273 |
if self.logit_scale == 0:
|
274 |
-
warnings.warn(
|
|
|
275 |
logits *= self.logit_scale
|
276 |
loss = None
|
277 |
if labels is not None:
|
278 |
labels = torch.roll(labels, shifts=-1)
|
279 |
labels[:, -1] = -100
|
280 |
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.to(logits.device).view(-1))
|
281 |
-
return CausalLMOutputWithPast(loss=loss, logits=logits, past_key_values=outputs.past_key_values,
|
|
|
282 |
|
283 |
def param_init_fn(self, module):
|
284 |
init_fn_name = self.config.init_config['name']
|
285 |
-
MODEL_INIT_REGISTRY[init_fn_name](module=module, n_layers=self.config.n_layers, d_model=self.config.d_model,
|
|
|
286 |
|
287 |
def fsdp_wrap_fn(self, module):
|
288 |
return isinstance(module, MPTBlock)
|
@@ -308,16 +380,17 @@ class MPTForCausalLM(MPTPreTrainedModel):
|
|
308 |
raise NotImplementedError('MPT with prefix_lm=True does not support use_cache=False.')
|
309 |
else:
|
310 |
prefix_mask = None
|
311 |
-
return {'input_ids': input_ids, 'attention_mask': attention_mask, 'prefix_mask': prefix_mask,
|
|
|
|
|
312 |
|
313 |
@staticmethod
|
314 |
def _reorder_cache(past_key_values, beam_idx):
|
315 |
"""Used by HuggingFace generate when using beam search with kv-caching.
|
316 |
-
|
317 |
See https://github.com/huggingface/transformers/blob/3ec7a47664ebe40c40f4b722f6bb1cd30c3821ec/src/transformers/models/gpt2/modeling_gpt2.py#L1122-L1133
|
318 |
for an example in transformers.
|
319 |
"""
|
320 |
reordered_past = []
|
321 |
for layer_past in past_key_values:
|
322 |
reordered_past += [tuple((past_state.index_select(0, beam_idx) for past_state in layer_past))]
|
323 |
-
return reordered_past
|
|
|
1 |
"""A simple, flexible implementation of a GPT model.
|
|
|
2 |
Inspired by https://github.com/karpathy/minGPT/blob/master/mingpt/model.py
|
3 |
"""
|
4 |
import math
|
|
|
24 |
pass
|
25 |
Tokenizer = Union[PreTrainedTokenizer, PreTrainedTokenizerFast]
|
26 |
|
27 |
+
|
28 |
class MPTPreTrainedModel(PreTrainedModel):
|
29 |
config_class = MPTConfig
|
30 |
base_model_prefix = 'model'
|
31 |
+
_no_split_modules = ["MPTBlock"]
|
32 |
+
supports_gradient_checkpointing = True
|
33 |
+
|
34 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
35 |
+
if isinstance(module, MPTModel):
|
36 |
+
module.gradient_checkpointing = value
|
37 |
+
|
38 |
|
39 |
class MPTModel(MPTPreTrainedModel):
|
40 |
|
41 |
def __init__(self, config: MPTConfig):
|
42 |
config._validate_config()
|
43 |
super().__init__(config)
|
44 |
+
self.gradient_checkpointing = False
|
45 |
self.attn_impl = config.attn_config['attn_impl']
|
46 |
self.prefix_lm = config.attn_config['prefix_lm']
|
47 |
self.attn_uses_sequence_id = config.attn_config['attn_uses_sequence_id']
|
|
|
91 |
self.wte = value
|
92 |
|
93 |
@torch.no_grad()
|
94 |
+
def _attn_bias(self, device, dtype, attention_mask: Optional[torch.ByteTensor] = None,
|
95 |
+
prefix_mask: Optional[torch.ByteTensor] = None, sequence_id: Optional[torch.LongTensor] = None):
|
96 |
if not self._attn_bias_initialized:
|
97 |
if self.attn_bias_shape:
|
98 |
self.attn_bias = torch.zeros(self.attn_bias_shape, device=device, dtype=dtype)
|
99 |
+
self.attn_bias = build_attn_bias(self.attn_impl, self.attn_bias, self.config.n_heads,
|
100 |
+
self.config.max_seq_len, causal=self.is_causal, alibi=self.alibi,
|
101 |
+
alibi_bias_max=self.alibi_bias_max)
|
102 |
self._attn_bias_initialized = True
|
103 |
if self.attn_impl == 'flash':
|
104 |
return (self.attn_bias, attention_mask)
|
|
|
118 |
attn_bias = torch.zeros((1, 1, 1, s_k), device=device, dtype=dtype)
|
119 |
else:
|
120 |
_s_k = max(0, attn_bias.size(-1) - s_k)
|
121 |
+
attn_bias = attn_bias[:, :, :, -s_k:]
|
122 |
if prefix_mask is not None and attention_mask.shape != prefix_mask.shape:
|
123 |
raise ValueError(f'attention_mask shape={attention_mask.shape} ' + f'and prefix_mask shape={prefix_mask.shape} are not equal.')
|
124 |
min_val = torch.finfo(attn_bias.dtype).min
|
|
|
128 |
def _apply_prefix_mask(self, attn_bias: torch.Tensor, prefix_mask: torch.Tensor):
|
129 |
(s_k, s_q) = attn_bias.shape[-2:]
|
130 |
if s_k != self.config.max_seq_len or s_q != self.config.max_seq_len:
|
131 |
+
raise ValueError(
|
132 |
+
'attn_bias does not match the expected shape. ' + f'The last two dimensions should both be {self.config.max_length} ' + f'but are {s_k} and {s_q}.')
|
133 |
seq_len = prefix_mask.shape[-1]
|
134 |
if seq_len > self.config.max_seq_len:
|
135 |
raise ValueError(f'prefix_mask sequence length cannot exceed max_seq_len={self.config.max_seq_len}')
|
136 |
attn_bias = attn_bias[..., :seq_len, :seq_len]
|
137 |
+
causal = torch.tril(torch.ones((seq_len, seq_len), dtype=torch.bool, device=prefix_mask.device)).view(1, 1,
|
138 |
+
seq_len,
|
139 |
+
seq_len)
|
140 |
prefix = prefix_mask.view(-1, 1, 1, seq_len)
|
141 |
cannot_attend = ~torch.logical_or(causal, prefix.bool())
|
142 |
min_val = torch.finfo(attn_bias.dtype).min
|
|
|
148 |
if seq_len > self.config.max_seq_len:
|
149 |
raise ValueError(f'sequence_id sequence length cannot exceed max_seq_len={self.config.max_seq_len}')
|
150 |
attn_bias = attn_bias[..., :seq_len, :seq_len]
|
151 |
+
cannot_attend = torch.logical_not(
|
152 |
+
torch.eq(sequence_id.view(-1, seq_len, 1), sequence_id.view(-1, 1, seq_len))).unsqueeze(1)
|
153 |
min_val = torch.finfo(attn_bias.dtype).min
|
154 |
attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
|
155 |
return attn_bias
|
156 |
|
157 |
+
def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]] = None,
|
158 |
+
attention_mask: Optional[torch.ByteTensor] = None, prefix_mask: Optional[torch.ByteTensor] = None,
|
159 |
+
sequence_id: Optional[torch.LongTensor] = None, return_dict: Optional[bool] = None,
|
160 |
+
output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
|
161 |
+
use_cache: Optional[bool] = None, inputs_embeds: Optional[torch.FloatTensor] = None):
|
162 |
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
163 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
164 |
+
if self.gradient_checkpointing and self.training:
|
165 |
+
if use_cache:
|
166 |
+
use_cache = False
|
167 |
+
if input_ids is not None and inputs_embeds is not None:
|
168 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
169 |
+
elif input_ids is not None:
|
170 |
+
batch_size, seq_length = input_ids.shape
|
171 |
+
elif inputs_embeds is not None:
|
172 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
173 |
+
else:
|
174 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
175 |
+
|
176 |
+
seq_length_with_past = seq_length
|
177 |
+
past_key_values_length = 0
|
178 |
+
|
179 |
+
if past_key_values is not None:
|
180 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
181 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
182 |
+
|
183 |
if attention_mask is not None:
|
184 |
attention_mask = attention_mask.bool()
|
185 |
+
else:
|
186 |
+
attention_mask = torch.ones(
|
187 |
+
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
|
188 |
+
)
|
189 |
+
|
190 |
+
if inputs_embeds is None:
|
191 |
+
tok_emb = self.wte(input_ids)
|
192 |
+
else:
|
193 |
+
tok_emb = inputs_embeds
|
194 |
+
|
195 |
if prefix_mask is not None:
|
196 |
prefix_mask = prefix_mask.bool()
|
197 |
if not return_dict:
|
198 |
raise NotImplementedError('return_dict False is not implemented yet for MPT')
|
199 |
if output_attentions:
|
200 |
+
raise NotImplementedError('output_attentions is not implemented yet for MPT')
|
201 |
+
# if attention_mask is not None and attention_mask[:, 0].sum() != attention_mask.shape[0] and self.training:
|
202 |
+
# raise NotImplementedError('MPT does not support training with left padding.')
|
|
|
203 |
if self.prefix_lm and prefix_mask is None:
|
204 |
raise ValueError('prefix_mask is a required argument when MPT is configured with prefix_lm=True.')
|
|
|
|
|
205 |
if self.training:
|
206 |
if self.attn_uses_sequence_id and sequence_id is None:
|
207 |
+
raise ValueError(
|
208 |
+
'sequence_id is a required argument when MPT is configured with attn_uses_sequence_id=True ' + 'and the model is in train mode.')
|
209 |
elif self.attn_uses_sequence_id is False and sequence_id is not None:
|
210 |
+
warnings.warn(
|
211 |
+
'MPT received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. ' + 'This input will be ignored. If you want the model to use `sequence_id`, set attn_uses_sequence_id to True.')
|
212 |
+
S = seq_length
|
213 |
assert S <= self.config.max_seq_len, f'Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}'
|
|
|
214 |
if self.alibi:
|
215 |
x = tok_emb
|
216 |
else:
|
217 |
past_position = 0
|
218 |
if past_key_values is not None:
|
219 |
if len(past_key_values) != self.config.n_layers:
|
220 |
+
raise ValueError(
|
221 |
+
f'past_key_values must provide a past_key_value for each attention ' + f'layer in the network (len(past_key_values)={len(past_key_values)!r}; self.config.n_layers={self.config.n_layers!r}).')
|
222 |
past_position = past_key_values[0][0].size(1)
|
|
|
|
|
223 |
if S + past_position > self.config.max_seq_len:
|
224 |
+
raise ValueError(
|
225 |
+
f'Cannot forward input with past sequence length {past_position} and current sequence length {S + 1}, this model only supports total sequence length <= {self.config.max_seq_len}.')
|
226 |
pos = torch.arange(past_position, S + past_position, dtype=torch.long, device=input_ids.device).unsqueeze(0)
|
227 |
+
if attention_mask is not None and not self.training:
|
228 |
+
pos = torch.clamp(pos - torch.cumsum((~attention_mask).to(torch.int32), dim=1)[:, past_position:],
|
229 |
+
min=0)
|
230 |
pos_emb = self.wpe(pos)
|
231 |
x = tok_emb + pos_emb
|
232 |
if self.embedding_fraction == 1:
|
|
|
235 |
x_shrunk = x * self.embedding_fraction + x.detach() * (1 - self.embedding_fraction)
|
236 |
assert isinstance(self.emb_drop, nn.Module)
|
237 |
x = self.emb_drop(x_shrunk)
|
238 |
+
(attn_bias, attention_mask) = self._attn_bias(device=x.device, dtype=x.dtype, attention_mask=attention_mask,
|
239 |
+
prefix_mask=prefix_mask, sequence_id=sequence_id)
|
240 |
if use_cache and past_key_values is None:
|
241 |
past_key_values = [() for _ in range(self.config.n_layers)]
|
242 |
+
|
243 |
all_hidden_states = () if output_hidden_states else None
|
|
|
244 |
for (b_idx, block) in enumerate(self.blocks):
|
245 |
if output_hidden_states:
|
246 |
assert all_hidden_states is not None
|
247 |
all_hidden_states = all_hidden_states + (x,)
|
248 |
past_key_value = past_key_values[b_idx] if past_key_values is not None else None
|
249 |
+
|
250 |
+
if self.gradient_checkpointing and self.training:
|
251 |
+
|
252 |
+
def create_custom_forward(module):
|
253 |
+
def custom_forward(*inputs):
|
254 |
+
# None for past_key_value
|
255 |
+
return module(*inputs)
|
256 |
+
|
257 |
+
return custom_forward
|
258 |
+
|
259 |
+
(x, past_key_value) = torch.utils.checkpoint.checkpoint(
|
260 |
+
create_custom_forward(block),
|
261 |
+
x,
|
262 |
+
past_key_value,
|
263 |
+
attn_bias,
|
264 |
+
attention_mask,
|
265 |
+
self.is_causal,
|
266 |
+
)
|
267 |
+
else:
|
268 |
+
(x, past_key_value) = block(x, past_key_value=past_key_value, attn_bias=attn_bias,
|
269 |
+
attention_mask=attention_mask, is_causal=self.is_causal)
|
270 |
+
|
271 |
if past_key_values is not None:
|
272 |
past_key_values[b_idx] = past_key_value
|
|
|
|
|
|
|
273 |
x = self.norm_f(x)
|
274 |
+
return BaseModelOutputWithPast(last_hidden_state=x, past_key_values=past_key_values,
|
275 |
+
hidden_states=all_hidden_states)
|
|
|
|
|
276 |
|
277 |
def param_init_fn(self, module):
|
278 |
init_fn_name = self.config.init_config['name']
|
279 |
+
MODEL_INIT_REGISTRY[init_fn_name](module=module, n_layers=self.config.n_layers, d_model=self.config.d_model,
|
280 |
+
**self.config.init_config)
|
281 |
|
282 |
def fsdp_wrap_fn(self, module):
|
283 |
return isinstance(module, MPTBlock)
|
|
|
285 |
def activation_checkpointing_fn(self, module):
|
286 |
return isinstance(module, MPTBlock)
|
287 |
|
288 |
+
|
289 |
class MPTForCausalLM(MPTPreTrainedModel):
|
290 |
|
291 |
def __init__(self, config: MPTConfig):
|
292 |
super().__init__(config)
|
293 |
if not config.tie_word_embeddings:
|
294 |
raise ValueError('MPTForCausalLM only supports tied word embeddings')
|
|
|
295 |
self.transformer = MPTModel(config)
|
|
|
|
|
|
|
|
|
|
|
296 |
self.logit_scale = None
|
297 |
if config.logit_scale is not None:
|
298 |
logit_scale = config.logit_scale
|
|
|
300 |
if logit_scale == 'inv_sqrt_d_model':
|
301 |
logit_scale = 1 / math.sqrt(config.d_model)
|
302 |
else:
|
303 |
+
raise ValueError(
|
304 |
+
f"logit_scale={logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.")
|
305 |
self.logit_scale = logit_scale
|
306 |
|
307 |
def get_input_embeddings(self):
|
|
|
322 |
def get_decoder(self):
|
323 |
return self.transformer
|
324 |
|
325 |
+
def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]] = None,
|
326 |
+
attention_mask: Optional[torch.ByteTensor] = None, prefix_mask: Optional[torch.ByteTensor] = None,
|
327 |
+
sequence_id: Optional[torch.LongTensor] = None, labels: Optional[torch.LongTensor] = None,
|
328 |
+
return_dict: Optional[bool] = None, output_attentions: Optional[bool] = None,
|
329 |
+
output_hidden_states: Optional[bool] = None, use_cache: Optional[bool] = None,
|
330 |
+
inputs_embeds: Optional[torch.FloatTensor] = None):
|
331 |
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
332 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
333 |
+
outputs = self.transformer(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask,
|
334 |
+
prefix_mask=prefix_mask, sequence_id=sequence_id, return_dict=return_dict,
|
335 |
+
output_attentions=output_attentions, output_hidden_states=output_hidden_states,
|
336 |
+
use_cache=use_cache, inputs_embeds=inputs_embeds)
|
337 |
+
|
338 |
+
last_hidden_state = outputs.last_hidden_state
|
339 |
+
logits = F.linear(last_hidden_state, self.transformer.wte.weight)
|
340 |
+
|
341 |
if self.logit_scale is not None:
|
342 |
if self.logit_scale == 0:
|
343 |
+
warnings.warn(
|
344 |
+
f'Multiplying logits by self.logit_scale={self.logit_scale!r}. This will produce uniform (uninformative) outputs.')
|
345 |
logits *= self.logit_scale
|
346 |
loss = None
|
347 |
if labels is not None:
|
348 |
labels = torch.roll(labels, shifts=-1)
|
349 |
labels[:, -1] = -100
|
350 |
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.to(logits.device).view(-1))
|
351 |
+
return CausalLMOutputWithPast(loss=loss, logits=logits, past_key_values=outputs.past_key_values,
|
352 |
+
hidden_states=outputs.hidden_states)
|
353 |
|
354 |
def param_init_fn(self, module):
|
355 |
init_fn_name = self.config.init_config['name']
|
356 |
+
MODEL_INIT_REGISTRY[init_fn_name](module=module, n_layers=self.config.n_layers, d_model=self.config.d_model,
|
357 |
+
**self.config.init_config)
|
358 |
|
359 |
def fsdp_wrap_fn(self, module):
|
360 |
return isinstance(module, MPTBlock)
|
|
|
380 |
raise NotImplementedError('MPT with prefix_lm=True does not support use_cache=False.')
|
381 |
else:
|
382 |
prefix_mask = None
|
383 |
+
return {'input_ids': input_ids, 'attention_mask': attention_mask, 'prefix_mask': prefix_mask,
|
384 |
+
'sequence_id': sequence_id, 'past_key_values': past_key_values,
|
385 |
+
'use_cache': kwargs.get('use_cache', True)}
|
386 |
|
387 |
@staticmethod
|
388 |
def _reorder_cache(past_key_values, beam_idx):
|
389 |
"""Used by HuggingFace generate when using beam search with kv-caching.
|
|
|
390 |
See https://github.com/huggingface/transformers/blob/3ec7a47664ebe40c40f4b722f6bb1cd30c3821ec/src/transformers/models/gpt2/modeling_gpt2.py#L1122-L1133
|
391 |
for an example in transformers.
|
392 |
"""
|
393 |
reordered_past = []
|
394 |
for layer_past in past_key_values:
|
395 |
reordered_past += [tuple((past_state.index_select(0, beam_idx) for past_state in layer_past))]
|
396 |
+
return reordered_past
|