Darewin-7B is a merge of the following models using LazyMergekit:

🧩 Configuration

models:
  - model: mistralai/Mistral-7B-v0.1
    # No parameters necessary for base model
  - model: Intel/neural-chat-7b-v3-3
    parameters:
      density: 0.6
      weight: 0.2
  - model: openaccess-ai-collective/DPOpenHermes-7B-v2
    parameters:
      density: 0.6
      weight: 0.1
  - model: fblgit/una-cybertron-7b-v2-bf16
    parameters:
      density: 0.6
      weight: 0.2
  - model: openchat/openchat-3.5-0106
    parameters:
      density: 0.6
      weight: 0.15
  - model: OpenPipe/mistral-ft-optimized-1227
    parameters:
      density: 0.6
      weight: 0.25
  - model: mlabonne/NeuralHermes-2.5-Mistral-7B
    parameters:
      density: 0.6
      weight: 0.1
merge_method: dare_ties
base_model: mistralai/Mistral-7B-v0.1
parameters:
  int8_mask: true
dtype: bfloat16

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "mlabonne/NeuralDarewin-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 71.79
AI2 Reasoning Challenge (25-Shot) 70.14
HellaSwag (10-Shot) 86.40
MMLU (5-Shot) 64.85
TruthfulQA (0-shot) 62.92
Winogrande (5-shot) 79.72
GSM8k (5-shot) 66.72
Downloads last month
95
Safetensors
Model size
7.24B params
Tensor type
FP16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mlabonne/NeuralDarewin-7B

Quantizations
3 models

Spaces using mlabonne/NeuralDarewin-7B 5

Evaluation results