File size: 10,367 Bytes
4eab9ea 70fc1a9 4eab9ea d1e4097 4936f46 4eab9ea 38aba7d 4eab9ea 777b2c7 4eab9ea 38aba7d ef2d8a7 38aba7d 8f4b077 38aba7d 8f4b077 38aba7d 8f4b077 38aba7d 8f4b077 38aba7d 8f4b077 38aba7d 8f4b077 38aba7d 8f4b077 38aba7d 8f4b077 38aba7d 4eab9ea 38aba7d 5aa70ec 38aba7d cc0ad73 4936f46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
---
license: cc-by-nc-4.0
tags:
- merge
- mergekit
- lazymergekit
- AIDC-ai-business/Marcoroni-7B-v3
- EmbeddedLLM/Mistral-7B-Merge-14-v0.1
model-index:
- name: Marcoro14-7B-slerp
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 69.8
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Marcoro14-7B-slerp
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 87.13
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Marcoro14-7B-slerp
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 65.11
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Marcoro14-7B-slerp
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 63.54
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Marcoro14-7B-slerp
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 81.61
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Marcoro14-7B-slerp
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 70.89
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Marcoro14-7B-slerp
name: Open LLM Leaderboard
---
![](https://i.imgur.com/FSKtmRc.png)
# Marcoro14-7B-slerp
This model is a merge of the following models made with [mergekit](https://github.com/cg123/mergekit):
* [AIDC-ai-business/Marcoroni-7B-v3](https://huggingface.co/AIDC-ai-business/Marcoroni-7B-v3)
* [EmbeddedLLM/Mistral-7B-Merge-14-v0.1](https://huggingface.co/EmbeddedLLM/Mistral-7B-Merge-14-v0.1)
## 🏆 Evaluation
Marcoro14-7B-slerp is the best-performing 7B LLM on the Open LLM Leaderboard (rank 1 below is 9B):
![](https://i.imgur.com/5XUuP7g.png)
I also evaluated it using Nous' benchmark suite and obtained the following results:
| Model |AGIEval|GPT4ALL|TruthfulQA|Bigbench|Average|
|-------------------------|------:|------:|---------:|-------:|------:|
|Marcoro14-7B-slerp | 44.66| 76.24| 64.15| 45.64| 57.67|
|OpenHermes-2.5-Mistral-7B| 43.07| 73.12| 53.04| 40.96| 52.57|
|Change | +1.59| +3.12| +11.11| +4.68| +5.1|
### AGIEval
| Task |Version| Metric |Value| |Stderr|
|------------------------------|------:|--------|----:|---|-----:|
|agieval_aqua_rat | 0|acc |26.38|± | 2.77|
| | |acc_norm|24.41|± | 2.70|
|agieval_logiqa_en | 0|acc |38.25|± | 1.91|
| | |acc_norm|39.32|± | 1.92|
|agieval_lsat_ar | 0|acc |24.35|± | 2.84|
| | |acc_norm|25.22|± | 2.87|
|agieval_lsat_lr | 0|acc |50.00|± | 2.22|
| | |acc_norm|50.59|± | 2.22|
|agieval_lsat_rc | 0|acc |62.83|± | 2.95|
| | |acc_norm|62.08|± | 2.96|
|agieval_sat_en | 0|acc |79.61|± | 2.81|
| | |acc_norm|79.61|± | 2.81|
|agieval_sat_en_without_passage| 0|acc |45.15|± | 3.48|
| | |acc_norm|45.63|± | 3.48|
|agieval_sat_math | 0|acc |33.18|± | 3.18|
| | |acc_norm|30.45|± | 3.11|
Average: 44.66%
### GPT4ALL
| Task |Version| Metric |Value| |Stderr|
|-------------|------:|--------|----:|---|-----:|
|arc_challenge| 0|acc |63.91|± | 1.40|
| | |acc_norm|64.93|± | 1.39|
|arc_easy | 0|acc |86.07|± | 0.71|
| | |acc_norm|83.75|± | 0.76|
|boolq | 1|acc |88.56|± | 0.56|
|hellaswag | 0|acc |67.31|± | 0.47|
| | |acc_norm|85.28|± | 0.35|
|openbookqa | 0|acc |36.40|± | 2.15|
| | |acc_norm|48.20|± | 2.24|
|piqa | 0|acc |82.59|± | 0.88|
| | |acc_norm|84.39|± | 0.85|
|winogrande | 0|acc |78.53|± | 1.15|
Average: 76.24%
### TruthfulQA
| Task |Version|Metric|Value| |Stderr|
|-------------|------:|------|----:|---|-----:|
|truthfulqa_mc| 1|mc1 |46.88|± | 1.75|
| | |mc2 |64.15|± | 1.52|
Average: 64.15%
### Bigbench
| Task |Version| Metric |Value| |Stderr|
|------------------------------------------------|------:|---------------------|----:|---|-----:|
|bigbench_causal_judgement | 0|multiple_choice_grade|56.32|± | 3.61|
|bigbench_date_understanding | 0|multiple_choice_grade|66.40|± | 2.46|
|bigbench_disambiguation_qa | 0|multiple_choice_grade|45.35|± | 3.11|
|bigbench_geometric_shapes | 0|multiple_choice_grade|20.33|± | 2.13|
| | |exact_str_match | 4.74|± | 1.12|
|bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|30.00|± | 2.05|
|bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|21.43|± | 1.55|
|bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|52.33|± | 2.89|
|bigbench_movie_recommendation | 0|multiple_choice_grade|39.20|± | 2.19|
|bigbench_navigate | 0|multiple_choice_grade|53.90|± | 1.58|
|bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|72.15|± | 1.00|
|bigbench_ruin_names | 0|multiple_choice_grade|52.46|± | 2.36|
|bigbench_salient_translation_error_detection | 0|multiple_choice_grade|25.75|± | 1.38|
|bigbench_snarks | 0|multiple_choice_grade|72.38|± | 3.33|
|bigbench_sports_understanding | 0|multiple_choice_grade|73.63|± | 1.40|
|bigbench_temporal_sequences | 0|multiple_choice_grade|45.70|± | 1.58|
|bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|23.44|± | 1.20|
|bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|18.51|± | 0.93|
|bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|52.33|± | 2.89|
Average: 45.64%
Average score: 57.67%
## 🧩 Configuration
```yaml
slices:
- sources:
- model: AIDC-ai-business/Marcoroni-7B-v3
layer_range: [0, 32]
- model: EmbeddedLLM/Mistral-7B-Merge-14-v0.1
layer_range: [0, 32]
merge_method: slerp
base_model: AIDC-ai-business/Marcoroni-7B-v3
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mlabonne/Marcoro14-7B-slerp"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
Output:
> A large language model is a type of artificial intelligence (AI) system that has been trained on vast amounts of text data. It's designed to understand and generate human-like language, making predictions on what words or phrases might come next in a sentence or document. These models use complex algorithms and neural network architectures to learn from the data and improve their performance over time. Some well-known large language models include GPT-3 from OpenAI and BERT from Google.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_mlabonne__Marcoro14-7B-slerp)
| Metric |Value|
|---------------------------------|----:|
|Avg. |73.01|
|AI2 Reasoning Challenge (25-Shot)|69.80|
|HellaSwag (10-Shot) |87.13|
|MMLU (5-Shot) |65.11|
|TruthfulQA (0-shot) |63.54|
|Winogrande (5-shot) |81.61|
|GSM8k (5-shot) |70.89|
|