Update README.md
Browse files
README.md
CHANGED
@@ -5,12 +5,99 @@ tags:
|
|
5 |
- mergekit
|
6 |
---
|
7 |
|
|
|
|
|
8 |
# Marcoro14-7B-slerp
|
9 |
|
10 |
This model is a merge of the following models made with [mergekit](https://github.com/cg123/mergekit):
|
11 |
* [AIDC-ai-business/Marcoroni-7B-v3](https://huggingface.co/AIDC-ai-business/Marcoroni-7B-v3)
|
12 |
* [EmbeddedLLM/Mistral-7B-Merge-14-v0.1](https://huggingface.co/EmbeddedLLM/Mistral-7B-Merge-14-v0.1)
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
## 🧩 Configuration
|
15 |
|
16 |
```yaml
|
@@ -30,4 +117,29 @@ parameters:
|
|
30 |
value: [1, 0.5, 0.7, 0.3, 0]
|
31 |
- value: 0.5
|
32 |
dtype: bfloat16
|
33 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
- mergekit
|
6 |
---
|
7 |
|
8 |
+
![](https://i.imgur.com/FSKtmRc.png)
|
9 |
+
|
10 |
# Marcoro14-7B-slerp
|
11 |
|
12 |
This model is a merge of the following models made with [mergekit](https://github.com/cg123/mergekit):
|
13 |
* [AIDC-ai-business/Marcoroni-7B-v3](https://huggingface.co/AIDC-ai-business/Marcoroni-7B-v3)
|
14 |
* [EmbeddedLLM/Mistral-7B-Merge-14-v0.1](https://huggingface.co/EmbeddedLLM/Mistral-7B-Merge-14-v0.1)
|
15 |
|
16 |
+
## 🏆 Evaluation
|
17 |
+
|
18 |
+
Marcoro14-7B-slerp is the second best-performing 7B LLM on the Open LLM Leaderboard:
|
19 |
+
|
20 |
+
![](https://i.imgur.com/5XUuP7g.png)
|
21 |
+
|
22 |
+
I also evaluated it using Nous' benchmark suite and obtained the following results:
|
23 |
+
|
24 |
+
| Model |agieval|gpt4all|truthfulqa|bigbench|Average|
|
25 |
+
|-------------------------|------:|------:|---------:|-------:|------:|
|
26 |
+
|Marcoro14-7B-slerp | 44.66| 76.24| 64.15| 45.64| 57.67|
|
27 |
+
|OpenHermes-2.5-Mistral-7B| 43.07| 73.12| 53.04| 40.96| 52.57|
|
28 |
+
|Change | +1.59| +3.12| +11.11| +4.68| +5.1|
|
29 |
+
|
30 |
+
### AGIEVAL
|
31 |
+
| Task |Version| Metric |Value| |Stderr|
|
32 |
+
|------------------------------|------:|--------|----:|---|-----:|
|
33 |
+
|agieval_aqua_rat | 0|acc |26.38|± | 2.77|
|
34 |
+
| | |acc_norm|24.41|± | 2.70|
|
35 |
+
|agieval_logiqa_en | 0|acc |38.25|± | 1.91|
|
36 |
+
| | |acc_norm|39.32|± | 1.92|
|
37 |
+
|agieval_lsat_ar | 0|acc |24.35|± | 2.84|
|
38 |
+
| | |acc_norm|25.22|± | 2.87|
|
39 |
+
|agieval_lsat_lr | 0|acc |50.00|± | 2.22|
|
40 |
+
| | |acc_norm|50.59|± | 2.22|
|
41 |
+
|agieval_lsat_rc | 0|acc |62.83|± | 2.95|
|
42 |
+
| | |acc_norm|62.08|± | 2.96|
|
43 |
+
|agieval_sat_en | 0|acc |79.61|± | 2.81|
|
44 |
+
| | |acc_norm|79.61|± | 2.81|
|
45 |
+
|agieval_sat_en_without_passage| 0|acc |45.15|± | 3.48|
|
46 |
+
| | |acc_norm|45.63|± | 3.48|
|
47 |
+
|agieval_sat_math | 0|acc |33.18|± | 3.18|
|
48 |
+
| | |acc_norm|30.45|± | 3.11|
|
49 |
+
Average: 44.66%
|
50 |
+
|
51 |
+
### GPT4ALL
|
52 |
+
| Task |Version| Metric |Value| |Stderr|
|
53 |
+
|-------------|------:|--------|----:|---|-----:|
|
54 |
+
|arc_challenge| 0|acc |63.91|± | 1.40|
|
55 |
+
| | |acc_norm|64.93|± | 1.39|
|
56 |
+
|arc_easy | 0|acc |86.07|± | 0.71|
|
57 |
+
| | |acc_norm|83.75|± | 0.76|
|
58 |
+
|boolq | 1|acc |88.56|± | 0.56|
|
59 |
+
|hellaswag | 0|acc |67.31|± | 0.47|
|
60 |
+
| | |acc_norm|85.28|± | 0.35|
|
61 |
+
|openbookqa | 0|acc |36.40|± | 2.15|
|
62 |
+
| | |acc_norm|48.20|± | 2.24|
|
63 |
+
|piqa | 0|acc |82.59|± | 0.88|
|
64 |
+
| | |acc_norm|84.39|± | 0.85|
|
65 |
+
|winogrande | 0|acc |78.53|± | 1.15|
|
66 |
+
Average: 76.24%
|
67 |
+
|
68 |
+
### TRUTHFULQA
|
69 |
+
| Task |Version|Metric|Value| |Stderr|
|
70 |
+
|-------------|------:|------|----:|---|-----:|
|
71 |
+
|truthfulqa_mc| 1|mc1 |46.88|± | 1.75|
|
72 |
+
| | |mc2 |64.15|± | 1.52|
|
73 |
+
Average: 64.15%
|
74 |
+
|
75 |
+
### BIGBENCH
|
76 |
+
| Task |Version| Metric |Value| |Stderr|
|
77 |
+
|------------------------------------------------|------:|---------------------|----:|---|-----:|
|
78 |
+
|bigbench_causal_judgement | 0|multiple_choice_grade|56.32|± | 3.61|
|
79 |
+
|bigbench_date_understanding | 0|multiple_choice_grade|66.40|± | 2.46|
|
80 |
+
|bigbench_disambiguation_qa | 0|multiple_choice_grade|45.35|± | 3.11|
|
81 |
+
|bigbench_geometric_shapes | 0|multiple_choice_grade|20.33|± | 2.13|
|
82 |
+
| | |exact_str_match | 4.74|± | 1.12|
|
83 |
+
|bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|30.00|± | 2.05|
|
84 |
+
|bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|21.43|± | 1.55|
|
85 |
+
|bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|52.33|± | 2.89|
|
86 |
+
|bigbench_movie_recommendation | 0|multiple_choice_grade|39.20|± | 2.19|
|
87 |
+
|bigbench_navigate | 0|multiple_choice_grade|53.90|± | 1.58|
|
88 |
+
|bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|72.15|± | 1.00|
|
89 |
+
|bigbench_ruin_names | 0|multiple_choice_grade|52.46|± | 2.36|
|
90 |
+
|bigbench_salient_translation_error_detection | 0|multiple_choice_grade|25.75|± | 1.38|
|
91 |
+
|bigbench_snarks | 0|multiple_choice_grade|72.38|± | 3.33|
|
92 |
+
|bigbench_sports_understanding | 0|multiple_choice_grade|73.63|± | 1.40|
|
93 |
+
|bigbench_temporal_sequences | 0|multiple_choice_grade|45.70|± | 1.58|
|
94 |
+
|bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|23.44|± | 1.20|
|
95 |
+
|bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|18.51|± | 0.93|
|
96 |
+
|bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|52.33|± | 2.89|
|
97 |
+
Average: 45.64%
|
98 |
+
|
99 |
+
Average score: 57.67%
|
100 |
+
|
101 |
## 🧩 Configuration
|
102 |
|
103 |
```yaml
|
|
|
117 |
value: [1, 0.5, 0.7, 0.3, 0]
|
118 |
- value: 0.5
|
119 |
dtype: bfloat16
|
120 |
+
```
|
121 |
+
|
122 |
+
## 💻 Usage
|
123 |
+
|
124 |
+
```python
|
125 |
+
!pip install -qU transformers accelerate
|
126 |
+
|
127 |
+
from transformers import AutoTokenizer
|
128 |
+
import transformers
|
129 |
+
import torch
|
130 |
+
|
131 |
+
model = "mlabonne/NeuralPipe-7B-slerp"
|
132 |
+
messages = [{"role": "user", "content": "What is a large language model?"}]
|
133 |
+
|
134 |
+
tokenizer = AutoTokenizer.from_pretrained(model)
|
135 |
+
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
136 |
+
pipeline = transformers.pipeline(
|
137 |
+
"text-generation",
|
138 |
+
model=model,
|
139 |
+
torch_dtype=torch.float16,
|
140 |
+
device_map="auto",
|
141 |
+
)
|
142 |
+
|
143 |
+
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
|
144 |
+
print(outputs[0]["generated_text"])
|
145 |
+
```
|