leaderboard-pr-bot commited on
Commit
4936f46
1 Parent(s): 70fc1a9

Adding Evaluation Results

Browse files

This is an automated PR created with https://huggingface.co/spaces/Weyaxi/open-llm-leaderboard-results-pr

The purpose of this PR is to add evaluation results from the Open LLM Leaderboard to your model card.

If you encounter any issues, please report them to https://huggingface.co/spaces/Weyaxi/open-llm-leaderboard-results-pr/discussions

Files changed (1) hide show
  1. README.md +117 -1
README.md CHANGED
@@ -6,6 +6,109 @@ tags:
6
  - lazymergekit
7
  - AIDC-ai-business/Marcoroni-7B-v3
8
  - EmbeddedLLM/Mistral-7B-Merge-14-v0.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  ---
10
 
11
  ![](https://i.imgur.com/FSKtmRc.png)
@@ -153,4 +256,17 @@ print(outputs[0]["generated_text"])
153
 
154
  Output:
155
 
156
- > A large language model is a type of artificial intelligence (AI) system that has been trained on vast amounts of text data. It's designed to understand and generate human-like language, making predictions on what words or phrases might come next in a sentence or document. These models use complex algorithms and neural network architectures to learn from the data and improve their performance over time. Some well-known large language models include GPT-3 from OpenAI and BERT from Google.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  - lazymergekit
7
  - AIDC-ai-business/Marcoroni-7B-v3
8
  - EmbeddedLLM/Mistral-7B-Merge-14-v0.1
9
+ model-index:
10
+ - name: Marcoro14-7B-slerp
11
+ results:
12
+ - task:
13
+ type: text-generation
14
+ name: Text Generation
15
+ dataset:
16
+ name: AI2 Reasoning Challenge (25-Shot)
17
+ type: ai2_arc
18
+ config: ARC-Challenge
19
+ split: test
20
+ args:
21
+ num_few_shot: 25
22
+ metrics:
23
+ - type: acc_norm
24
+ value: 69.8
25
+ name: normalized accuracy
26
+ source:
27
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Marcoro14-7B-slerp
28
+ name: Open LLM Leaderboard
29
+ - task:
30
+ type: text-generation
31
+ name: Text Generation
32
+ dataset:
33
+ name: HellaSwag (10-Shot)
34
+ type: hellaswag
35
+ split: validation
36
+ args:
37
+ num_few_shot: 10
38
+ metrics:
39
+ - type: acc_norm
40
+ value: 87.13
41
+ name: normalized accuracy
42
+ source:
43
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Marcoro14-7B-slerp
44
+ name: Open LLM Leaderboard
45
+ - task:
46
+ type: text-generation
47
+ name: Text Generation
48
+ dataset:
49
+ name: MMLU (5-Shot)
50
+ type: cais/mmlu
51
+ config: all
52
+ split: test
53
+ args:
54
+ num_few_shot: 5
55
+ metrics:
56
+ - type: acc
57
+ value: 65.11
58
+ name: accuracy
59
+ source:
60
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Marcoro14-7B-slerp
61
+ name: Open LLM Leaderboard
62
+ - task:
63
+ type: text-generation
64
+ name: Text Generation
65
+ dataset:
66
+ name: TruthfulQA (0-shot)
67
+ type: truthful_qa
68
+ config: multiple_choice
69
+ split: validation
70
+ args:
71
+ num_few_shot: 0
72
+ metrics:
73
+ - type: mc2
74
+ value: 63.54
75
+ source:
76
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Marcoro14-7B-slerp
77
+ name: Open LLM Leaderboard
78
+ - task:
79
+ type: text-generation
80
+ name: Text Generation
81
+ dataset:
82
+ name: Winogrande (5-shot)
83
+ type: winogrande
84
+ config: winogrande_xl
85
+ split: validation
86
+ args:
87
+ num_few_shot: 5
88
+ metrics:
89
+ - type: acc
90
+ value: 81.61
91
+ name: accuracy
92
+ source:
93
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Marcoro14-7B-slerp
94
+ name: Open LLM Leaderboard
95
+ - task:
96
+ type: text-generation
97
+ name: Text Generation
98
+ dataset:
99
+ name: GSM8k (5-shot)
100
+ type: gsm8k
101
+ config: main
102
+ split: test
103
+ args:
104
+ num_few_shot: 5
105
+ metrics:
106
+ - type: acc
107
+ value: 70.89
108
+ name: accuracy
109
+ source:
110
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Marcoro14-7B-slerp
111
+ name: Open LLM Leaderboard
112
  ---
113
 
114
  ![](https://i.imgur.com/FSKtmRc.png)
 
256
 
257
  Output:
258
 
259
+ > A large language model is a type of artificial intelligence (AI) system that has been trained on vast amounts of text data. It's designed to understand and generate human-like language, making predictions on what words or phrases might come next in a sentence or document. These models use complex algorithms and neural network architectures to learn from the data and improve their performance over time. Some well-known large language models include GPT-3 from OpenAI and BERT from Google.
260
+ # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
261
+ Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_mlabonne__Marcoro14-7B-slerp)
262
+
263
+ | Metric |Value|
264
+ |---------------------------------|----:|
265
+ |Avg. |73.01|
266
+ |AI2 Reasoning Challenge (25-Shot)|69.80|
267
+ |HellaSwag (10-Shot) |87.13|
268
+ |MMLU (5-Shot) |65.11|
269
+ |TruthfulQA (0-shot) |63.54|
270
+ |Winogrande (5-shot) |81.61|
271
+ |GSM8k (5-shot) |70.89|
272
+