Gemmalpaca-2B
This is gemma-2b model supervised fine-tuned on the vicgalle/alpaca-gpt4 dataset. It outperforms gemma-2b-it, Google's chat version, on Nous' benchmark suite.
It's mostly a test to see how fine-tuning works with Gemma models on a well-known dataset. It turned out better than expected. :)
🔍 Applications
This model has a context length of 8k. I recommend using it with the Alpaca chat template and NOT the Gemma Instruct template (works perfectly with LM Studio). You also want to add </s>
as a stop token.
⚡ Quantized models
🏆 Evaluation
Nous
Gemmalpaca-2B outperforms gemma-2b and gemma-2b-it on Nous' benchmark suite (evaluation performed using LLM AutoEval). See the entire leaderboard here.
Model | Average | AGIEval | GPT4All | TruthfulQA | Bigbench |
---|---|---|---|---|---|
mlabonne/Gemmalpaca-2B 📄 | 38.39 | 24.48 | 51.22 | 47.02 | 30.85 |
google/gemma-2b-it 📄 | 36.1 | 23.76 | 43.6 | 47.64 | 29.41 |
google/gemma-2b 📄 | 34.26 | 22.7 | 43.35 | 39.96 | 31.03 |
Open LLM Leaderboard
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 45.65 |
AI2 Reasoning Challenge (25-Shot) | 48.72 |
HellaSwag (10-Shot) | 71.36 |
MMLU (5-Shot) | 36.30 |
TruthfulQA (0-shot) | 41.24 |
Winogrande (5-shot) | 65.59 |
GSM8k (5-shot) | 10.69 |
🧩 Configuration
It was trained using Axolotl with the following configuration.
base_model: alpindale/gemma-2b
model_type: GemmaForCausalLM
tokenizer_type: GemmaTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: vicgalle/alpaca-gpt4
type: alpaca
dataset_prepared_path:
val_set_size: 0.01
output_dir: ./out
sequence_len: 2048
sample_packing: true
pad_to_sequence_len: true
adapter: qlora
lora_model_dir:
lora_r: 32
lora_alpha: 64
lora_dropout: 0.05
lora_target_linear: true
wandb_project: axolotl
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 3
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention:
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_table_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
bos_token: <s>
eos_token: </s>
unk_token: <unk>
- Downloads last month
- 152
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for mlabonne/Gemmalpaca-2B
Dataset used to train mlabonne/Gemmalpaca-2B
Space using mlabonne/Gemmalpaca-2B 1
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard48.720
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard71.360
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard36.300
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard41.240
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard65.590
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard10.690