ChimeraLlama-3-8B-v3
ChimeraLlama-3-8B-v3 is a merge of the following models using LazyMergekit:
- NousResearch/Meta-Llama-3-8B-Instruct
- mlabonne/OrpoLlama-3-8B
- cognitivecomputations/dolphin-2.9-llama3-8b
- Danielbrdz/Barcenas-Llama3-8b-ORPO
- VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct
- vicgalle/Configurable-Llama-3-8B-v0.3
- MaziyarPanahi/Llama-3-8B-Instruct-DPO-v0.3
𧩠Configuration
models:
- model: NousResearch/Meta-Llama-3-8B
# No parameters necessary for base model
- model: NousResearch/Meta-Llama-3-8B-Instruct
parameters:
density: 0.6
weight: 0.5
- model: mlabonne/OrpoLlama-3-8B
parameters:
density: 0.55
weight: 0.05
- model: cognitivecomputations/dolphin-2.9-llama3-8b
parameters:
density: 0.55
weight: 0.05
- model: Danielbrdz/Barcenas-Llama3-8b-ORPO
parameters:
density: 0.55
weight: 0.2
- model: VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct
parameters:
density: 0.55
weight: 0.1
- model: vicgalle/Configurable-Llama-3-8B-v0.3
parameters:
density: 0.55
weight: 0.05
- model: MaziyarPanahi/Llama-3-8B-Instruct-DPO-v0.3
parameters:
density: 0.55
weight: 0.05
merge_method: dare_ties
base_model: NousResearch/Meta-Llama-3-8B
parameters:
int8_mask: true
dtype: float16
π» Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mlabonne/ChimeraLlama-3-8B-v3"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 20.53 |
IFEval (0-Shot) | 44.08 |
BBH (3-Shot) | 27.65 |
MATH Lvl 5 (4-Shot) | 7.85 |
GPQA (0-shot) | 5.59 |
MuSR (0-shot) | 8.38 |
MMLU-PRO (5-shot) | 29.65 |
- Downloads last month
- 7,296
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for mlabonne/ChimeraLlama-3-8B-v3
Merge model
this model
Spaces using mlabonne/ChimeraLlama-3-8B-v3 7
Evaluation results
- strict accuracy on IFEval (0-Shot)Open LLM Leaderboard44.080
- normalized accuracy on BBH (3-Shot)Open LLM Leaderboard27.650
- exact match on MATH Lvl 5 (4-Shot)Open LLM Leaderboard7.850
- acc_norm on GPQA (0-shot)Open LLM Leaderboard5.590
- acc_norm on MuSR (0-shot)Open LLM Leaderboard8.380
- accuracy on MMLU-PRO (5-shot)test set Open LLM Leaderboard29.650