ArchBeagle-7B
ArchBeagle-7B is a merge of the following models using LazyMergekit:
- shadowml/WestBeagle-7B
- mlabonne/NeuralBeagle14-7B
- shadowml/BeagSake-7B
- mlabonne/NeuralOmniBeagle-7B-v2
- mlabonne/NeuralOmniBeagle-7B
- mlabonne/OmniBeagle-7B
🧩 Configuration
models:
- model: mistralai/Mistral-7B-v0.1
# no parameters necessary for base model
- model: shadowml/WestBeagle-7B
parameters:
density: 0.65
weight: 0.25
- model: mlabonne/NeuralBeagle14-7B
parameters:
density: 0.6
weight: 0.15
- model: shadowml/BeagSake-7B
parameters:
density: 0.55
weight: 0.1
- model: mlabonne/NeuralOmniBeagle-7B-v2
parameters:
density: 0.65
weight: 0.25
- model: mlabonne/NeuralOmniBeagle-7B
parameters:
density: 0.6
weight: 0.15
- model: mlabonne/OmniBeagle-7B
parameters:
density: 0.55
weight: 0.1
merge_method: dare_ties
base_model: mistralai/Mistral-7B-v0.1
parameters:
int8_mask: true
dtype: float16
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mlabonne/ArchBeagle-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
- Downloads last month
- 25
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for mlabonne/ArchBeagle-7B
Merge model
this model