AlphaMonarch-7B / README.md
mlabonne's picture
Update README.md
dba6bca verified
|
raw
history blame
5.56 kB
metadata
license: cc-by-nc-4.0
tags:
  - merge
  - lazymergekit
dataset:
  - mlabonne/truthy-dpo-v0.1
  - mlabonne/distilabel-intel-orca-dpo-pairs
  - mlabonne/distilabel-intel-orca-dpo-pairs
base_model:
  - mlabonne/NeuralMonarch-7B
language:
  - en

image/jpeg

πŸ‘‘ AlphaMonarch-7B

Update 14/02/24: AlphaMonarch-7B is the new best-performing 7B model on Nous' benchmark suite! πŸŽ‰

AlphaMonarch-7B is a DPO fine-tuned of mlabonne/NeuralMonarch-7B using the argilla/OpenHermes2.5-dpo-binarized-alpha preference dataset.

It is based on a merge of the following models using LazyMergekit:

Special thanks to Jon Durbin, Intel, and Argilla for the preference datasets.

πŸ” Applications

This model uses a context window of 8k. I recommend using it with the Mistral Instruct chat template.

Compared to other 7B models, it displays good performance in instruction following and reasoning tasks. It can also be used for RP and storytelling.

⚑ Quantized models

πŸ† Evaluation

Nous

The evaluation was performed using LLM AutoEval on Nous suite. See the entire leaderboard here.

Model Average AGIEval GPT4All TruthfulQA Bigbench
AlphaMonarch-7B πŸ“„ 62.74 45.37 77.01 78.39 50.2
NeuralMonarch-7B πŸ“„ 62.73 45.31 76.99 78.35 50.28
Monarch-7B πŸ“„ 62.68 45.48 77.07 78.04 50.14
teknium/OpenHermes-2.5-Mistral-7B πŸ“„ 52.42 42.75 72.99 52.99 40.94
mlabonne/NeuralHermes-2.5-Mistral-7B πŸ“„ 53.51 43.67 73.24 55.37 41.76
mlabonne/NeuralBeagle14-7B πŸ“„ 60.25 46.06 76.77 70.32 47.86
eren23/dpo-binarized-NeuralTrix-7B πŸ“„ 62.5 44.57 76.34 79.81 49.27
CultriX/NeuralTrix-7B-dpo πŸ“„ 62.5 44.61 76.33 79.8 49.24

Open LLM Leaderboard

AlphaMonarch-7B is one of the best-performing non-merge 7B models on the Open LLM Leaderboard:

image/png

MT-Bench

########## First turn ##########
                                    score
model                       turn         
gpt-4                       1     8.95625
AlphaMonarch-7B             1     8.23750
claude-v1                   1     8.15000
gpt-3.5-turbo               1     8.07500
claude-instant-v1           1     7.80000

########## Second turn ##########
                                     score
model                       turn          
gpt-4                       2     9.025000
claude-instant-v1           2     8.012658
gpt-3.5-turbo               2     7.812500
claude-v1                   2     7.650000
AlphaMonarch-7B             2     7.618750

########## Average ##########
                                score
model                                
gpt-4                        8.990625
gpt-3.5-turbo                7.943750
AlphaMonarch-7B              7.928125
claude-instant-v1            7.905660
claude-v1                    7.900000

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "mlabonne/MonarchMonarch-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])