File size: 5,557 Bytes
b3e5549 e8789f1 b3e5549 e8789f1 b3e5549 e8789f1 b3e5549 e8789f1 b3e5549 e8789f1 b3e5549 e8789f1 b3e5549 e8789f1 b3e5549 e8789f1 b3e5549 e8789f1 b3e5549 e8789f1 b3e5549 e8789f1 b3e5549 dba6bca b3e5549 e8789f1 b3e5549 e8789f1 b3e5549 e8789f1 b3e5549 e8789f1 dba6bca e8789f1 b3e5549 e8789f1 b3e5549 e8789f1 b3e5549 e8789f1 b3e5549 e8789f1 b3e5549 e8789f1 b3e5549 e8789f1 b3e5549 e8789f1 b3e5549 e8789f1 b3e5549 e8789f1 b3e5549 e8789f1 b3e5549 e8789f1 b3e5549 e8789f1 b3e5549 e8789f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
---
license: cc-by-nc-4.0
tags:
- merge
- lazymergekit
dataset:
- mlabonne/truthy-dpo-v0.1
- mlabonne/distilabel-intel-orca-dpo-pairs
- mlabonne/distilabel-intel-orca-dpo-pairs
base_model:
- mlabonne/NeuralMonarch-7B
language:
- en
---
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/TI7C8F2gk43gmI9U2L0uk.jpeg)
# π AlphaMonarch-7B
**Update 14/02/24: AlphaMonarch-7B is the new best-performing 7B model on Nous' benchmark suite! π**
AlphaMonarch-7B is a DPO fine-tuned of [mlabonne/NeuralMonarch-7B](https://huggingface.co/mlabonne/NeuralMonarch-7B/) using the [argilla/OpenHermes2.5-dpo-binarized-alpha](https://huggingface.co/datasets/argilla/OpenHermes2.5-dpo-binarized-alpha) preference dataset.
It is based on a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [mlabonne/OmniTruthyBeagle-7B-v0](https://huggingface.co/mlabonne/OmniTruthyBeagle-7B-v0)
* [mlabonne/NeuBeagle-7B](https://huggingface.co/mlabonne/NeuBeagle-7B)
* [mlabonne/NeuralOmniBeagle-7B](https://huggingface.co/mlabonne/NeuralOmniBeagle-7B)
Special thanks to [Jon Durbin](https://huggingface.co/jondurbin), [Intel](https://huggingface.co/Intel), and [Argilla](https://huggingface.co/argilla) for the preference datasets.
## π Applications
This model uses a context window of 8k. I recommend using it with the Mistral Instruct chat template.
Compared to other 7B models, it displays good performance in instruction following and reasoning tasks. It can also be used for RP and storytelling.
## β‘ Quantized models
* **GGUF**: https://huggingface.co/mlabonne/AlphaMonarch-7B-GGUF
## π Evaluation
### Nous
The evaluation was performed using [LLM AutoEval](https://github.com/mlabonne/llm-autoeval) on Nous suite. See the entire leaderboard [here](https://huggingface.co/spaces/mlabonne/Yet_Another_LLM_Leaderboard).
| Model | Average | AGIEval | GPT4All | TruthfulQA | Bigbench |
|---|---:|---:|---:|---:|---:|
| [**AlphaMonarch-7B**](https://huggingface.co/mlabonne/AlphaMonarch-7B) [π](https://gist.github.com/mlabonne/1d33c86824b3a11d2308e36db1ba41c1) | **62.74** | **45.37** | **77.01** | **78.39** | **50.2** |
| [NeuralMonarch-7B](https://huggingface.co/mlabonne/NeuralMonarch-7B) [π](https://gist.github.com/mlabonne/64050c96c6aa261a8f5b403190c8dee4) | 62.73 | 45.31 | 76.99 | 78.35 | 50.28 |
| [Monarch-7B](https://huggingface.co/mlabonne/Monarch-7B) [π](https://gist.github.com/mlabonne/0b8d057c5ece41e0290580a108c7a093) | 62.68 | 45.48 | 77.07 | 78.04 | 50.14 |
| [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) [π](https://gist.github.com/mlabonne/88b21dd9698ffed75d6163ebdc2f6cc8) | 52.42 | 42.75 | 72.99 | 52.99 | 40.94 |
| [mlabonne/NeuralHermes-2.5-Mistral-7B](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B) [π](https://gist.github.com/mlabonne/14687f1eb3425b166db511f31f8e66f6) | 53.51 | 43.67 | 73.24 | 55.37 | 41.76 |
| [mlabonne/NeuralBeagle14-7B](https://huggingface.co/mlabonne/NeuralBeagle14-7B) [π](https://gist.github.com/mlabonne/ad0c665bbe581c8420136c3b52b3c15c) | 60.25 | 46.06 | 76.77 | 70.32 | 47.86 |
| [eren23/dpo-binarized-NeuralTrix-7B](https://huggingface.co/eren23/dpo-binarized-NeuralTrix-7B) [π](https://gist.github.com/CultriX-Github/dbdde67ead233df0c7c56f1b091f728c) | 62.5 | 44.57 | 76.34 | 79.81 | 49.27 |
| [CultriX/NeuralTrix-7B-dpo](https://huggingface.co/CultriX/NeuralTrix-7B-dpo) [π](https://gist.github.com/CultriX-Github/df0502599867d4043b45d9dafb5976e8) | 62.5 | 44.61 | 76.33 | 79.8 | 49.24 |
### Open LLM Leaderboard
AlphaMonarch-7B is one of the best-performing non-merge 7B models on the Open LLM Leaderboard:
![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/njHxX_ERQaBssHqp17fMy.png)
### MT-Bench
```
########## First turn ##########
score
model turn
gpt-4 1 8.95625
AlphaMonarch-7B 1 8.23750
claude-v1 1 8.15000
gpt-3.5-turbo 1 8.07500
claude-instant-v1 1 7.80000
########## Second turn ##########
score
model turn
gpt-4 2 9.025000
claude-instant-v1 2 8.012658
gpt-3.5-turbo 2 7.812500
claude-v1 2 7.650000
AlphaMonarch-7B 2 7.618750
########## Average ##########
score
model
gpt-4 8.990625
gpt-3.5-turbo 7.943750
AlphaMonarch-7B 7.928125
claude-instant-v1 7.905660
claude-v1 7.900000
```
## π» Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mlabonne/MonarchMonarch-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
``` |