BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext_pub_section
- original model file name: textclassifer_BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext_pubmed_20k
- This is a fine-tuned checkpoint of
microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext
for document section text classification - possible document section classes are:BACKGROUND, CONCLUSIONS, METHODS, OBJECTIVE, RESULTS,
usage in python
install transformers as needed:
pip install -U transformers
Run the following, changing the example text to your use case:
from transformers import pipeline
model_tag = "ml4pubmed/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext_pub_section"
classifier = pipeline(
'text-classification',
model=model_tag,
)
prompt = """
Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train.
"""
classifier(
prompt,
) # classify the sentence
metadata
training_metrics
val_accuracy: 0.8678670525550842
val_matthewscorrcoef: 0.8222037553787231
val_f1score: 0.866841197013855
val_cross_entropy: 0.3674609065055847
epoch: 8.0
train_accuracy_step: 0.83984375
train_matthewscorrcoef_step: 0.7790813446044922
train_f1score_step: 0.837363600730896
train_cross_entropy_step: 0.39843088388442993
train_accuracy_epoch: 0.8538406491279602
train_matthewscorrcoef_epoch: 0.8031334280967712
train_f1score_epoch: 0.8521654605865479
train_cross_entropy_epoch: 0.4116102457046509
test_accuracy: 0.8578397035598755
test_matthewscorrcoef: 0.8091378808021545
test_f1score: 0.8566917181015015
test_cross_entropy: 0.3963385224342346
date_run: Apr-22-2022_t-19
huggingface_tag: microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext
- Downloads last month
- 704