As we always use Transformers, it's helpful to understand RoPE—Rotary Position Embedding. Since token order matters, RoPE encodes it by rotating token embeddings based on their position, so the model knows how to interpret which token comes first, second, and so on.
Here are 8 types of RoPE that can be implemented in different cases:
4. Multimodal RoPE (MRoPE) -> Qwen2.5-VL Technical Report (2502.13923) Decomposes positional embedding into 3 components: temporal, height and width, so that positional features are aligned across modalities: text, images and videos.
8. XPos (Extrapolatable Position Embedding) -> https://huggingface.co/papers/2212.10 Introduces an exponential decay factor into the rotation matrix, improving stability on long sequences.
Attention mechanisms allow models to dynamically focus on specific parts of their input when performing tasks. In our recent article, we discussed Multi-Head Latent Attention (MLA) in detail and now it's time to summarize other existing types of attention.
Here is a list of 15 types of attention mechanisms used in AI models:
3. Self-attention -> Attention Is All You Need (1706.03762) Each element in the sequence "looks" at other elements and "decides" how much to borrow from each of them for its new representation.
5. Multi-Head Attention (MHA) -> Attention Is All You Need (1706.03762) Multiple attention “heads” are run in parallel. The model computes several attention distributions (heads), each with its own set of learned projections of queries, keys, and values.
🚀 New smolagents update: Safer Local Python Execution! 🦾🐍
With the latest release, we've added security checks to the local Python interpreter: every evaluation is now analyzed for dangerous builtins, modules, and functions. 🔒
Here's why this matters & what you need to know! 🧵👇
1️⃣ Why is local execution risky? ⚠️ AI agents that run arbitrary Python code can unintentionally (or maliciously) access system files, run unsafe commands, or exfiltrate data.
2️⃣ New Safety Layer in smolagents 🛡️ We now inspect every return value during execution: ✅ Allowed: Safe built-in types (e.g., numbers, strings, lists) ⛔ Blocked: Dangerous functions/modules (e.g., os.system, subprocess, exec, shutil)
4️⃣ Security Disclaimer ⚠️ 🚨 Despite these improvements, local Python execution is NEVER 100% safe. 🚨 If you need true isolation, use a remote sandboxed executor like Docker or E2B.
5️⃣ The Best Practice: Use Sandboxed Execution 🔐 For production-grade AI agents, we strongly recommend running code in a Docker or E2B sandbox to ensure complete isolation.
6️⃣ Upgrade Now & Stay Safe! 🚀 Check out the latest smolagents release and start building safer AI agents today.
✔️ modification of the cross-entropy loss function designed specifically for training LLMs. ✔️ twist on the standard cross-entropy loss by emphasizing the importance of outlier prediction errors and dynamically normalizing token-level variance. ✔️ more stable and efficient training, leading to models that generalize better.
Check it out, give it a spin, and let me know what you think!
Licensed under the Apache 2.0 license and ready to use. Happy training! 🔥🤖