TAPEX (large-sized model)

TAPEX was proposed in TAPEX: Table Pre-training via Learning a Neural SQL Executor by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou. The original repo can be found here.

Model description

TAPEX (Table Pre-training via Execution) is a conceptually simple and empirically powerful pre-training approach to empower existing models with table reasoning skills. TAPEX realizes table pre-training by learning a neural SQL executor over a synthetic corpus, which is obtained by automatically synthesizing executable SQL queries.

TAPEX is based on the BART architecture, the transformer encoder-encoder (seq2seq) model with a bidirectional (BERT-like) encoder and an autoregressive (GPT-like) decoder.

This model is the tapex-base model fine-tuned on the Tabfact dataset.

Intended Uses

You can use the model for table fact verficiation.

How to Use

Here is how to use this model in transformers:

from transformers import TapexTokenizer, BartForSequenceClassification
import pandas as pd

tokenizer = TapexTokenizer.from_pretrained("microsoft/tapex-large-finetuned-tabfact")
model = BartForSequenceClassification.from_pretrained("microsoft/tapex-large-finetuned-tabfact")

data = {
    "year": [1896, 1900, 1904, 2004, 2008, 2012],
    "city": ["athens", "paris", "st. louis", "athens", "beijing", "london"]
}
table = pd.DataFrame.from_dict(data)

# tapex accepts uncased input since it is pre-trained on the uncased corpus
query = "beijing hosts the olympic games in 2012"
encoding = tokenizer(table=table, query=query, return_tensors="pt")

outputs = model(**encoding)
output_id = int(outputs.logits[0].argmax(dim=0))
print(model.config.id2label[output_id])
# Refused

How to Eval

Please find the eval script here.

BibTeX entry and citation info

@inproceedings{
    liu2022tapex,
    title={{TAPEX}: Table Pre-training via Learning a Neural {SQL} Executor},
    author={Qian Liu and Bei Chen and Jiaqi Guo and Morteza Ziyadi and Zeqi Lin and Weizhu Chen and Jian-Guang Lou},
    booktitle={International Conference on Learning Representations},
    year={2022},
    url={https://openreview.net/forum?id=O50443AsCP}
}
Downloads last month
1,967
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train microsoft/tapex-large-finetuned-tabfact

Collection including microsoft/tapex-large-finetuned-tabfact