maxwellb-hf/granite-8b-code-instruct-128k-Q5_K_M-GGUF
This model was converted to GGUF format from ibm-granite/granite-8b-code-instruct-128k
using llama.cpp via the ggml.ai's GGUF-my-repo space.
Refer to the original model card for more details on the model.
Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
brew install llama.cpp
Invoke the llama.cpp server or the CLI.
CLI:
llama-cli --hf-repo maxwellb-hf/granite-8b-code-instruct-128k-Q5_K_M-GGUF --hf-file granite-8b-code-instruct-128k-q5_k_m.gguf -p "The meaning to life and the universe is"
Server:
llama-server --hf-repo maxwellb-hf/granite-8b-code-instruct-128k-Q5_K_M-GGUF --hf-file granite-8b-code-instruct-128k-q5_k_m.gguf -c 2048
Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
git clone https://github.com/ggerganov/llama.cpp
Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1
flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
cd llama.cpp && LLAMA_CURL=1 make
Step 3: Run inference through the main binary.
./llama-cli --hf-repo maxwellb-hf/granite-8b-code-instruct-128k-Q5_K_M-GGUF --hf-file granite-8b-code-instruct-128k-q5_k_m.gguf -p "The meaning to life and the universe is"
or
./llama-server --hf-repo maxwellb-hf/granite-8b-code-instruct-128k-Q5_K_M-GGUF --hf-file granite-8b-code-instruct-128k-q5_k_m.gguf -c 2048
- Downloads last month
- 35
Model tree for maxwellb-hf/granite-8b-code-instruct-128k-Q5_K_M-GGUF
Base model
ibm-granite/granite-8b-code-instruct-128kDatasets used to train maxwellb-hf/granite-8b-code-instruct-128k-Q5_K_M-GGUF
Evaluation results
- pass@1 on HumanEvalSynthesis (Python)self-reported62.200
- pass@1 on HumanEvalSynthesis (Python)self-reported51.400
- pass@1 on HumanEvalSynthesis (Python)self-reported38.900
- pass@1 on HumanEvalSynthesis (Python)self-reported38.300
- pass@1 (thresh=0.5) on RepoQA (Python@16K)self-reported73.000
- pass@1 (thresh=0.5) on RepoQA (Python@16K)self-reported37.000
- pass@1 (thresh=0.5) on RepoQA (Python@16K)self-reported73.000
- pass@1 (thresh=0.5) on RepoQA (Python@16K)self-reported62.000
- pass@1 (thresh=0.5) on RepoQA (Python@16K)self-reported63.000