distilhubert-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9299
  • Accuracy: 0.835

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.1474 1.0 100 2.1098 0.47
1.5063 2.0 200 1.5695 0.575
1.2171 3.0 300 1.1629 0.685
0.9388 4.0 400 0.9617 0.7
0.6208 5.0 500 0.9273 0.685
0.6771 6.0 600 0.7753 0.785
0.5799 7.0 700 0.8492 0.695
0.1527 8.0 800 0.6581 0.805
0.0586 9.0 900 0.6788 0.82
0.0355 10.0 1000 0.7627 0.81
0.0186 11.0 1100 0.7585 0.82
0.0102 12.0 1200 0.8328 0.825
0.0074 13.0 1300 0.8543 0.835
0.0063 14.0 1400 0.8574 0.83
0.0271 15.0 1500 0.8889 0.835
0.0043 16.0 1600 0.9197 0.83
0.0045 17.0 1700 0.9130 0.835
0.0036 18.0 1800 0.9242 0.835
0.0042 19.0 1900 0.9279 0.835
0.0034 20.0 2000 0.9299 0.835

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2
  • Datasets 2.14.7
  • Tokenizers 0.15.0
Downloads last month
7
Safetensors
Model size
23.7M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for magus4450/distilhubert-finetuned-gtzan

Finetuned
(425)
this model

Dataset used to train magus4450/distilhubert-finetuned-gtzan

Evaluation results