Edit model card

madatnlp/gamza-bart-for-kormath

This model is a fine-tuned version of gogamza/kobart-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.1418
  • Validation Loss: 0.3009
  • Epoch: 29

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'learning_rate': 1e-04, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Validation Loss Epoch
4.4155 1.9300 0
1.4995 1.0293 1
1.0445 0.8365 2
0.8775 0.7569 3
0.8198 0.7778 4
0.7619 0.7430 5
0.7324 0.7259 6
0.7234 0.7214 7
0.6697 0.6819 8
0.6599 0.6673 9
0.6387 0.6433 10
0.6227 0.6651 11
0.6017 0.6128 12
0.5820 0.6430 13
0.5229 0.5611 14
0.4617 0.4675 15
0.4071 0.4463 16
0.3495 0.4213 17
0.3202 0.4103 18
0.2875 0.4477 19
0.2528 0.3244 20
0.2331 0.4037 21
0.2117 0.3041 22
0.1943 0.3069 23
0.1805 0.3385 24
0.2267 0.3347 25
0.2049 0.2993 26
0.1800 0.3792 27
0.1583 0.2905 28
0.1418 0.3009 29

Framework versions

  • Transformers 4.18.0
  • TensorFlow 2.8.0
  • Datasets 2.1.0
  • Tokenizers 0.12.1
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.