Pythia-410m DPO finetuned using original DPO code with the helpful subset of Anthropic-hh-rlhf dataset for 1 epoch.

Checkpoints are also uploaded.

Fully reproducible finetuning code is available on GitHub

wandb log

See Pythia-410m for model details (paper).

See further details of these models in the paper Attributing Mode Collapse in the Fine-Tuning of Large Language Models.

You can cite these models if they are helpful as follows:

@inproceedings{o2024attributing,
  title={Attributing Mode Collapse in the Fine-Tuning of Large Language Models},
  author={O’Mahony, Laura and Grinsztajn, Leo and Schoelkopf, Hailey and Biderman, Stella},
  booktitle={ICLR 2024, Mathematical and Empirical Understanding of Foundation Models (ME-FoMo) workshop},
  year={2024}
}

hf (pretrained=lomahony/pythia-410m-helpful-dpo), gen_kwargs: (None), limit: None, num_fewshot: 0, batch_size: 16

Tasks Version Filter n-shot Metric Value Stderr
arc_challenge 1 none 0 acc 0.2338 ± 0.0124
none 0 acc_norm 0.2602 ± 0.0128
arc_easy 1 none 0 acc 0.5185 ± 0.0103
none 0 acc_norm 0.4609 ± 0.0102
boolq 2 none 0 acc 0.6214 ± 0.0085
hellaswag 1 none 0 acc 0.3447 ± 0.0047
none 0 acc_norm 0.4074 ± 0.0049
lambada_openai 1 none 0 perplexity 19.0431 ± 0.7027
none 0 acc 0.3978 ± 0.0068
openbookqa 1 none 0 acc 0.2000 ± 0.0179
none 0 acc_norm 0.3100 ± 0.0207
piqa 1 none 0 acc 0.6779 ± 0.0109
none 0 acc_norm 0.6757 ± 0.0109
sciq 1 none 0 acc 0.7760 ± 0.0132
none 0 acc_norm 0.6690 ± 0.0149
wikitext 2 none 0 word_perplexity 24.3807 ± N/A
none 0 byte_perplexity 1.8171 ± N/A
none 0 bits_per_byte 0.8617 ± N/A
winogrande 1 none 0 acc 0.5343 ± 0.0140

hf (pretrained=lomahony/pythia-410m-helpful-dpo), gen_kwargs: (None), limit: None, num_fewshot: 5, batch_size: 16

Tasks Version Filter n-shot Metric Value Stderr
arc_challenge 1 none 5 acc 0.2346 ± 0.0124
none 5 acc_norm 0.2747 ± 0.0130
arc_easy 1 none 5 acc 0.5509 ± 0.0102
none 5 acc_norm 0.5198 ± 0.0103
boolq 2 none 5 acc 0.5982 ± 0.0086
hellaswag 1 none 5 acc 0.3437 ± 0.0047
none 5 acc_norm 0.4059 ± 0.0049
lambada_openai 1 none 5 perplexity 34.3002 ± 1.3044
none 5 acc 0.3148 ± 0.0065
openbookqa 1 none 5 acc 0.1740 ± 0.0170
none 5 acc_norm 0.2880 ± 0.0203
piqa 1 none 5 acc 0.6741 ± 0.0109
none 5 acc_norm 0.6670 ± 0.0110
sciq 1 none 5 acc 0.8520 ± 0.0112
none 5 acc_norm 0.8350 ± 0.0117
wikitext 2 none 5 word_perplexity 24.3807 ± N/A
none 5 byte_perplexity 1.8171 ± N/A
none 5 bits_per_byte 0.8617 ± N/A
winogrande 1 none 5 acc 0.5162 ± 0.0140
Downloads last month
18
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train lomahony/pythia-410m-helpful-dpo

Collection including lomahony/pythia-410m-helpful-dpo