Model Card of lmqg/mt5-base-esquad-ae
This model is fine-tuned version of google/mt5-base for answer extraction on the lmqg/qg_esquad (dataset_name: default) via lmqg
.
Overview
- Language model: google/mt5-base
- Language: es
- Training data: lmqg/qg_esquad (default)
- Online Demo: https://autoqg.net/
- Repository: https://github.com/asahi417/lm-question-generation
- Paper: https://arxiv.org/abs/2210.03992
Usage
- With
lmqg
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="es", model="lmqg/mt5-base-esquad-ae")
# model prediction
answers = model.generate_a("a noviembre , que es también la estación lluviosa.")
- With
transformers
from transformers import pipeline
pipe = pipeline("text2text-generation", "lmqg/mt5-base-esquad-ae")
output = pipe("<hl> En la diáspora somalí, múltiples eventos islámicos de recaudación de fondos se llevan a cabo cada año en ciudades como Birmingham, Londres, Toronto y Minneapolis, donde los académicos y profesionales somalíes dan conferencias y responden preguntas de la audiencia. <hl> El propósito de estos eventos es recaudar dinero para nuevas escuelas o universidades en Somalia, para ayudar a los somalíes que han sufrido como consecuencia de inundaciones y / o sequías, o para reunir fondos para la creación de nuevas mezquitas como.")
Evaluation
- Metric (Answer Extraction): raw metric file
Score | Type | Dataset | |
---|---|---|---|
AnswerExactMatch | 57.81 | default | lmqg/qg_esquad |
AnswerF1Score | 74.84 | default | lmqg/qg_esquad |
BERTScore | 90.66 | default | lmqg/qg_esquad |
Bleu_1 | 43.7 | default | lmqg/qg_esquad |
Bleu_2 | 38.74 | default | lmqg/qg_esquad |
Bleu_3 | 35.16 | default | lmqg/qg_esquad |
Bleu_4 | 32.14 | default | lmqg/qg_esquad |
METEOR | 42.73 | default | lmqg/qg_esquad |
MoverScore | 81.22 | default | lmqg/qg_esquad |
ROUGE_L | 49.6 | default | lmqg/qg_esquad |
Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_esquad
- dataset_name: default
- input_types: ['paragraph_sentence']
- output_types: ['answer']
- prefix_types: None
- model: google/mt5-base
- max_length: 512
- max_length_output: 32
- epoch: 17
- batch: 8
- lr: 0.0005
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 8
- label_smoothing: 0.15
The full configuration can be found at fine-tuning config file.
Citation
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}
- Downloads last month
- 105
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Dataset used to train lmqg/mt5-base-esquad-ae
Evaluation results
- BLEU4 (Answer Extraction) on lmqg/qg_esquadself-reported32.140
- ROUGE-L (Answer Extraction) on lmqg/qg_esquadself-reported49.600
- METEOR (Answer Extraction) on lmqg/qg_esquadself-reported42.730
- BERTScore (Answer Extraction) on lmqg/qg_esquadself-reported90.660
- MoverScore (Answer Extraction) on lmqg/qg_esquadself-reported81.220
- AnswerF1Score (Answer Extraction) on lmqg/qg_esquadself-reported74.840
- AnswerExactMatch (Answer Extraction) on lmqg/qg_esquadself-reported57.810