llm-jp-13b-v1.0-mdsfmt

This repository provides large language models (Megatron-DeepSpeed format) developed by LLM-jp, a collaborative project launched in Japan. Hugging Face Transformers format models are available here.

llm-jp-13b-v1.0-mdsfmt-itr87870 and llm-jp-1.3b-v1.0-mdsfmt-itr87430 were originally trained with approximately 270B+ tokens. llm-jp-13b-v1.0-mdsfmt and llm-jp-1.3b-v1.0-mdsfmt are models further trained by additional (potentially) high-quality 27B tokens data from llm-jp-13b-v1.0-mdsfmt-itr87870 and llm-jp-1.3b-v1.0-mdsfmt-itr87430, respectively for finalizing the pre-training.

Model Details

  • Model type: Transformer-based Language Model
  • Total seen tokens: 300B
Model Params Layers Hidden size Heads Context length
13b model 13b 40 5120 40 2048
1.3b model 1.3b 24 2048 16 2048

Training

  • Pre-training:
    • Hardware: 96 A100 40GB GPUs (mdx cluster)
    • Software: Megatron-DeepSpeed

Tokenizer

The tokenizer of this model is based on huggingface/tokenizers Unigram byte-fallback model. The vocabulary entries were converted from llm-jp-tokenizer v2.1 (50k). Please refer to README.md of llm-ja-tokenizer for details on the vocabulary construction procedure.

  • Model: Hugging Face Fast Tokenizer using Unigram byte-fallback model which requires tokenizers>=0.14.0
  • Training algorithm: SentencePiece Unigram byte-fallback
  • Training data: A subset of the datasets for model pre-training
  • Vocabulary size: 50,570 (mixed vocabulary of Japanese, English, and source code)

Datasets

Pre-training

The models have been pre-trained using a blend of the following datasets.

Language Dataset Tokens
Japanese Wikipedia 1.5B
mC4 136B
English Wikipedia 5B
The Pile 135B
Codes The Stack 10B

The pre-training was continuously conducted using a total of 10 folds of non-overlapping data, each consisting of approximately 27-28B tokens. We finalized the pre-training with additional (potentially) high-quality 27B tokens data obtained from the identical source datasets listed above used for the 10-fold data.

Evaluation

You can view the evaluation results of several LLMs on this leaderboard. We used llm-jp-eval for the evaluation.

Risks and Limitations

The models released here are still in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations.

Send Questions to

llm-jp(at)nii.ac.jp

License

Apache License, Version 2.0

Model Card Authors

The names are listed in alphabetical order.

Hirokazu Kiyomaru, Hiroshi Matsuda, Jun Suzuki, Namgi Han, Saku Sugawara, Shota Sasaki, Shuhei Kurita, Taishi Nakamura, Takumi Okamoto.

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Examples
Inference API (serverless) has been turned off for this model.