gemma7b-summarize-gemini1_5flash-32k
This model is a fine-tuned version of google/gemma-7b on the llama-duo/synth_summarize_dataset_dedup dataset. It achieves the following results on the evaluation set:
- Loss: 2.5408
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
7.4587 | 1.0 | 52 | 4.9639 |
1.2656 | 2.0 | 104 | 2.7099 |
1.1018 | 3.0 | 156 | 2.5878 |
1.0198 | 4.0 | 208 | 2.5538 |
0.9682 | 5.0 | 260 | 2.5424 |
0.9349 | 6.0 | 312 | 2.5212 |
0.9093 | 7.0 | 364 | 2.5261 |
0.906 | 8.0 | 416 | 2.5334 |
0.9005 | 9.0 | 468 | 2.5352 |
0.8909 | 10.0 | 520 | 2.5408 |
Framework versions
- PEFT 0.10.0
- Transformers 4.40.0
- Pytorch 2.1.2+cu121
- Datasets 2.18.0
- Tokenizers 0.19.1
- Downloads last month
- 1
Model tree for llama-duo/gemma7b-summarize-gemini1_5flash-32k
Base model
google/gemma-7b