drawing

Evaluation

image/png

How to use

Hugggingface

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

tokenizer = AutoTokenizer.from_pretrained("lightblue/karasu-7B")
model = AutoModelForCausalLM.from_pretrained("lightblue/karasu-7B", torch_dtype=torch.bfloat16, device_map="auto")

pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)

messages = [{"role": "system", "content": "あなたはAIアシスタントです。"}]
messages.append({"role": "user", "content": "イギリスの首相は誰ですか?"})

prompt = tokenizer.apply_chat_template(conversation=messages, add_generation_prompt=True, tokenize=False)

pipe(prompt, max_new_tokens=100, do_sample=False, temperature=0.0, return_full_text=False)

VLLM

from vllm import LLM, SamplingParams

sampling_params = SamplingParams(temperature=0.0, max_tokens=100)
llm = LLM(model="lightblue/karasu-7B")

messages = [{"role": "system", "content": "あなたはAIアシスタントです。"}]
messages.append({"role": "user", "content": "イギリスの首相は誰ですか?"})
prompt = llm.llm_engine.tokenizer.apply_chat_template(conversation=messages, add_generation_prompt=True, tokenize=False)
prompts = [prompt]

outputs = llm.generate(prompts, sampling_params)
for output in outputs:
    prompt = output.prompt
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")

Base checkpoint

augmxnt/shisa-7b-v1

  • Mistral-7B base
  • Pre-trained on 8B of MADLAD-Ja
  • Finetuned on Japanese instructions
  • Highest scoring 7B model on conversation benchmark (JA MT-Bench)

Training datasets (total ~7B)

  • Aozora Bunko
  • Japanese Law Precedent Dataset
  • Japanese Wikipedia
  • .lg.jp, .go.jp, .ac.jp domain webscrapes from CulturaX (Any documents with same first 25 characters were de-duplicated)
  • English Ultrachat200K-gen (So that it doesn't forget English and chatting ability learned in the base checkpoint)

Developed by

Lightblue technology logo

Engineers

Peter Devine

Sho Higuchi

Advisors

Yuuki Yamanaka

Atom Sonoda

Project manager

Shunichi Taniguchi

Dataset evaluator

Renju Aoki

Downloads last month
18
Safetensors
Model size
7.96B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Datasets used to train lightblue/karasu-7B

Collection including lightblue/karasu-7B