liewchooichin's picture
First commit
e618099 verified
metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - general
model-index:
  - name: liewchooichin/distilbert-base-uncased-tiny-imdb
    results: []
datasets:
  - stanfordnlp/imdb
language:
  - en
pipeline_tag: fill-mask

liewchooichin/distilbert-base-uncased-tiny-imdb

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 2.9373
  • Validation Loss: 2.9930
  • Epoch: 2

Model description

This model is created from following the lesson in Hugging Face Learn. NLP -- Main NLP Tasks -- Fine-tuning a masked language model.

Intended uses & limitations

This is only a small scale fine-tuning of the standfordnlp/imbd datasets. Only 1000 rows of the unsupervised dataset is used for training. The exercise is carried on Google Colab - T4 gpu.

Training and evaluation data

1000 rows from the standfordnlp/imbd datasets.

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'transformers.optimization_tf', 'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -969, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}, 'registered_name': 'WarmUp'}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: mixed_float16

Training results

Train Loss Validation Loss Epoch
3.2484 3.2338 0
3.0821 2.8758 1
2.9373 2.9930 2

Framework versions

  • Transformers 4.40.2
  • TensorFlow 2.15.0
  • Datasets 2.19.1
  • Tokenizers 0.19.1