metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- general
model-index:
- name: liewchooichin/distilbert-base-uncased-tiny-imdb
results: []
datasets:
- stanfordnlp/imdb
language:
- en
pipeline_tag: fill-mask
liewchooichin/distilbert-base-uncased-tiny-imdb
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 2.9373
- Validation Loss: 2.9930
- Epoch: 2
Model description
This model is created from following the lesson in Hugging Face Learn. NLP -- Main NLP Tasks -- Fine-tuning a masked language model.
Intended uses & limitations
This is only a small scale fine-tuning of the standfordnlp/imbd
datasets. Only 1000 rows of the unsupervised
dataset is used for training.
The exercise is carried on Google Colab - T4 gpu.
Training and evaluation data
1000 rows from the standfordnlp/imbd
datasets.
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'transformers.optimization_tf', 'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -969, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}, 'registered_name': 'WarmUp'}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16
Training results
Train Loss | Validation Loss | Epoch |
---|---|---|
3.2484 | 3.2338 | 0 |
3.0821 | 2.8758 | 1 |
2.9373 | 2.9930 | 2 |
Framework versions
- Transformers 4.40.2
- TensorFlow 2.15.0
- Datasets 2.19.1
- Tokenizers 0.19.1