liewchooichin commited on
Commit
e618099
1 Parent(s): 7a1e60f

First commit

Browse files
Files changed (1) hide show
  1. README.md +12 -5
README.md CHANGED
@@ -2,10 +2,15 @@
2
  license: apache-2.0
3
  base_model: distilbert-base-uncased
4
  tags:
5
- - generated_from_keras_callback
6
  model-index:
7
  - name: liewchooichin/distilbert-base-uncased-tiny-imdb
8
  results: []
 
 
 
 
 
9
  ---
10
 
11
  <!-- This model card has been generated automatically according to the information Keras had access to. You should
@@ -21,15 +26,17 @@ It achieves the following results on the evaluation set:
21
 
22
  ## Model description
23
 
24
- More information needed
 
25
 
26
  ## Intended uses & limitations
27
 
28
- More information needed
 
29
 
30
  ## Training and evaluation data
31
 
32
- More information needed
33
 
34
  ## Training procedure
35
 
@@ -53,4 +60,4 @@ The following hyperparameters were used during training:
53
  - Transformers 4.40.2
54
  - TensorFlow 2.15.0
55
  - Datasets 2.19.1
56
- - Tokenizers 0.19.1
 
2
  license: apache-2.0
3
  base_model: distilbert-base-uncased
4
  tags:
5
+ - general
6
  model-index:
7
  - name: liewchooichin/distilbert-base-uncased-tiny-imdb
8
  results: []
9
+ datasets:
10
+ - stanfordnlp/imdb
11
+ language:
12
+ - en
13
+ pipeline_tag: fill-mask
14
  ---
15
 
16
  <!-- This model card has been generated automatically according to the information Keras had access to. You should
 
26
 
27
  ## Model description
28
 
29
+ This model is created from following the lesson in Hugging Face Learn.
30
+ NLP -- Main NLP Tasks -- [Fine-tuning a masked language model](https://huggingface.co/learn/nlp-course/chapter7/3?fw=tf#the-dataset).
31
 
32
  ## Intended uses & limitations
33
 
34
+ This is only a small scale fine-tuning of the `standfordnlp/imbd` datasets. Only 1000 rows of the `unsupervised` dataset is used for training.
35
+ The exercise is carried on Google Colab - T4 gpu.
36
 
37
  ## Training and evaluation data
38
 
39
+ 1000 rows from the `standfordnlp/imbd` datasets.
40
 
41
  ## Training procedure
42
 
 
60
  - Transformers 4.40.2
61
  - TensorFlow 2.15.0
62
  - Datasets 2.19.1
63
+ - Tokenizers 0.19.1