|
--- |
|
license: apache-2.0 |
|
base_model: distilbert-base-uncased |
|
tags: |
|
- general |
|
model-index: |
|
- name: liewchooichin/distilbert-base-uncased-tiny-imdb |
|
results: [] |
|
datasets: |
|
- stanfordnlp/imdb |
|
language: |
|
- en |
|
pipeline_tag: fill-mask |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should |
|
probably proofread and complete it, then remove this comment. --> |
|
|
|
# liewchooichin/distilbert-base-uncased-tiny-imdb |
|
|
|
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Train Loss: 2.9373 |
|
- Validation Loss: 2.9930 |
|
- Epoch: 2 |
|
|
|
## Model description |
|
|
|
This model is created from following the lesson in Hugging Face Learn. |
|
NLP -- Main NLP Tasks -- [Fine-tuning a masked language model](https://huggingface.co/learn/nlp-course/chapter7/3?fw=tf#the-dataset). |
|
|
|
## Intended uses & limitations |
|
|
|
This is only a small scale fine-tuning of the `standfordnlp/imbd` datasets. Only 1000 rows of the `unsupervised` dataset is used for training. |
|
The exercise is carried on Google Colab - T4 gpu. |
|
|
|
## Training and evaluation data |
|
|
|
1000 rows from the `standfordnlp/imbd` datasets. |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'transformers.optimization_tf', 'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -969, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}, 'registered_name': 'WarmUp'}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} |
|
- training_precision: mixed_float16 |
|
|
|
### Training results |
|
|
|
| Train Loss | Validation Loss | Epoch | |
|
|:----------:|:---------------:|:-----:| |
|
| 3.2484 | 3.2338 | 0 | |
|
| 3.0821 | 2.8758 | 1 | |
|
| 2.9373 | 2.9930 | 2 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.2 |
|
- TensorFlow 2.15.0 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |