Edit model card

text_shortening_model_v76

This model is a fine-tuned version of t5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1244
  • Bert precision: 0.8967
  • Bert recall: 0.8969
  • Bert f1-score: 0.8964
  • Average word count: 6.8061
  • Max word count: 16
  • Min word count: 2
  • Average token count: 10.9902
  • % shortened texts with length > 12: 1.5951

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Bert precision Bert recall Bert f1-score Average word count Max word count Min word count Average token count % shortened texts with length > 12
1.8741 1.0 30 1.3873 0.8846 0.8811 0.8823 6.7558 15 2 10.6282 2.5767
1.4617 2.0 60 1.2781 0.8879 0.8867 0.8868 6.8613 16 2 10.773 0.9816
1.3352 3.0 90 1.2202 0.8908 0.8894 0.8896 6.8503 14 2 10.8245 0.9816
1.2484 4.0 120 1.1879 0.892 0.8902 0.8907 6.7816 17 1 10.7963 1.1043
1.1842 5.0 150 1.1657 0.893 0.8904 0.8913 6.6945 14 2 10.6822 0.6135
1.1263 6.0 180 1.1490 0.8932 0.8921 0.8921 6.8601 17 2 10.8663 1.7178
1.0859 7.0 210 1.1347 0.8909 0.8942 0.8921 7.0663 17 1 11.1975 2.3313
1.0511 8.0 240 1.1219 0.8925 0.8934 0.8925 6.865 17 1 11.0074 1.227
1.0023 9.0 270 1.1118 0.8936 0.8937 0.8931 6.8393 17 1 10.9963 1.7178
0.9795 10.0 300 1.1073 0.8939 0.8929 0.8929 6.7227 17 1 10.8528 0.8589
0.9489 11.0 330 1.1050 0.8932 0.8951 0.8937 6.9337 17 2 11.0969 1.5951
0.9275 12.0 360 1.1026 0.8945 0.8953 0.8945 6.8331 17 2 11.0135 1.4724
0.8829 13.0 390 1.0989 0.8946 0.8957 0.8947 6.8638 17 1 11.038 1.3497
0.8762 14.0 420 1.0975 0.8939 0.8962 0.8946 6.9239 17 1 11.1423 2.0859
0.8559 15.0 450 1.0988 0.8953 0.8953 0.8948 6.8049 16 1 10.9742 1.7178
0.8347 16.0 480 1.0960 0.8963 0.8972 0.8963 6.8233 16 1 11.0258 1.4724
0.8166 17.0 510 1.1009 0.8973 0.8974 0.8969 6.7914 16 2 11.0135 1.227
0.8054 18.0 540 1.1015 0.8957 0.8972 0.896 6.8896 17 1 11.0871 1.9632
0.786 19.0 570 1.1064 0.896 0.897 0.8961 6.8356 16 2 11.038 1.7178
0.7764 20.0 600 1.1000 0.8964 0.8965 0.896 6.7951 16 3 10.9804 1.5951
0.7526 21.0 630 1.1040 0.8961 0.8976 0.8964 6.8663 17 3 11.0748 1.7178
0.7467 22.0 660 1.1051 0.8953 0.8964 0.8954 6.8184 16 3 11.0221 1.5951
0.734 23.0 690 1.1057 0.8965 0.897 0.8963 6.8307 16 2 11.0049 1.5951
0.7268 24.0 720 1.1027 0.8956 0.8973 0.896 6.9301 17 3 11.1153 1.8405
0.718 25.0 750 1.1062 0.8965 0.8971 0.8963 6.8258 16 2 11.016 1.5951
0.7068 26.0 780 1.1058 0.8961 0.8967 0.896 6.816 16 2 11.0061 1.4724
0.6985 27.0 810 1.1120 0.8961 0.8977 0.8965 6.8933 16 2 11.1018 1.9632
0.6831 28.0 840 1.1130 0.8965 0.8968 0.8962 6.8184 16 2 11.0037 1.7178
0.6769 29.0 870 1.1144 0.8973 0.8975 0.897 6.7779 17 2 10.989 1.4724
0.6803 30.0 900 1.1139 0.8976 0.898 0.8974 6.8098 17 2 10.9779 1.5951
0.6618 31.0 930 1.1147 0.8973 0.8978 0.8971 6.8037 17 2 10.9902 1.227
0.6745 32.0 960 1.1157 0.8962 0.897 0.8961 6.8307 16 2 11.0135 1.4724
0.6618 33.0 990 1.1193 0.8963 0.897 0.8962 6.8123 17 2 10.9951 1.3497
0.6572 34.0 1020 1.1223 0.897 0.8977 0.8969 6.8209 16 2 11.0037 1.4724
0.6562 35.0 1050 1.1240 0.8963 0.8971 0.8963 6.854 17 2 11.0196 1.7178
0.6433 36.0 1080 1.1233 0.8969 0.8967 0.8964 6.8049 16 2 10.9632 1.4724
0.6405 37.0 1110 1.1236 0.8974 0.8977 0.8971 6.8245 16 2 11.011 1.5951
0.645 38.0 1140 1.1239 0.8967 0.897 0.8964 6.8135 16 2 10.9902 1.8405
0.6409 39.0 1170 1.1244 0.8967 0.897 0.8964 6.8086 16 2 10.9939 1.5951
0.6371 40.0 1200 1.1244 0.8967 0.8969 0.8964 6.8061 16 2 10.9902 1.5951

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ldos/text_shortening_model_v76

Base model

google-t5/t5-small
Finetuned
(1529)
this model