Edit model card

text_shortening_model_v73

This model is a fine-tuned version of t5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6126
  • Bert precision: 0.9015
  • Bert recall: 0.9014
  • Bert f1-score: 0.901
  • Average word count: 6.4004
  • Max word count: 16
  • Min word count: 2
  • Average token count: 10.4705
  • % shortened texts with length > 12: 1.1011

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Bert precision Bert recall Bert f1-score Average word count Max word count Min word count Average token count % shortened texts with length > 12
1.5857 1.0 37 1.1932 0.8846 0.8848 0.8842 6.5315 16 1 10.4525 1.7017
1.184 2.0 74 1.0965 0.8918 0.8915 0.8911 6.4855 17 2 10.4735 0.5005
1.0114 3.0 111 1.0773 0.8895 0.8962 0.8924 6.8959 18 2 10.995 1.3013
0.8887 4.0 148 1.0798 0.8947 0.8936 0.8937 6.4454 17 2 10.4605 1.8018
0.7851 5.0 185 1.0807 0.8941 0.8948 0.894 6.5676 16 2 10.6016 1.6016
0.7116 6.0 222 1.1002 0.8984 0.8978 0.8976 6.4605 15 2 10.4174 1.2012
0.6472 7.0 259 1.1171 0.8982 0.8997 0.8985 6.5836 16 2 10.6426 1.3013
0.5872 8.0 296 1.1196 0.8998 0.9015 0.9002 6.5415 16 2 10.6226 1.5015
0.5393 9.0 333 1.1739 0.9007 0.8979 0.8988 6.3333 16 2 10.3063 1.1011
0.4879 10.0 370 1.2079 0.8997 0.8983 0.8985 6.3343 15 2 10.2913 1.001
0.4615 11.0 407 1.2230 0.8988 0.8997 0.8988 6.5165 15 2 10.6426 1.3013
0.4245 12.0 444 1.2325 0.8996 0.8979 0.8983 6.3704 15 2 10.4334 1.3013
0.3973 13.0 481 1.2657 0.8973 0.8987 0.8975 6.4855 15 2 10.5876 1.6016
0.3658 14.0 518 1.2875 0.8985 0.8993 0.8984 6.4735 15 2 10.5355 1.2012
0.3422 15.0 555 1.3202 0.9002 0.8991 0.8992 6.2873 14 2 10.3594 1.001
0.3271 16.0 592 1.3315 0.9006 0.9 0.8998 6.3784 15 2 10.4454 0.9009
0.305 17.0 629 1.3441 0.8994 0.9005 0.8995 6.4705 16 2 10.5906 1.2012
0.2847 18.0 666 1.3648 0.8997 0.8989 0.8989 6.3584 14 2 10.4244 0.9009
0.2707 19.0 703 1.3837 0.9005 0.9011 0.9003 6.4545 16 2 10.5365 1.3013
0.254 20.0 740 1.4180 0.8997 0.9006 0.8997 6.4444 15 2 10.5516 1.2012
0.2421 21.0 777 1.4100 0.9014 0.903 0.9017 6.4755 16 2 10.6016 0.9009
0.2301 22.0 814 1.4437 0.9 0.901 0.9 6.4825 15 2 10.5626 0.8008
0.2183 23.0 851 1.4762 0.9003 0.9014 0.9004 6.4995 16 2 10.6116 1.3013
0.2148 24.0 888 1.4815 0.9007 0.9014 0.9006 6.4484 16 2 10.5495 1.1011
0.2013 25.0 925 1.5039 0.9018 0.9015 0.9012 6.4144 15 2 10.4925 1.001
0.1924 26.0 962 1.5217 0.9013 0.9014 0.9009 6.4024 16 2 10.4765 1.2012
0.1854 27.0 999 1.5125 0.902 0.9014 0.9012 6.3774 16 2 10.4565 1.1011
0.1769 28.0 1036 1.5384 0.8998 0.9011 0.9 6.4925 16 2 10.6106 1.001
0.1713 29.0 1073 1.5627 0.9012 0.9018 0.901 6.4715 16 2 10.5395 1.2012
0.1685 30.0 1110 1.5473 0.9011 0.9004 0.9002 6.4064 16 2 10.4484 1.1011
0.1681 31.0 1147 1.5592 0.9018 0.9018 0.9013 6.4194 15 2 10.5165 0.8008
0.1599 32.0 1184 1.5800 0.9006 0.9007 0.9002 6.4254 16 2 10.5005 1.001
0.1509 33.0 1221 1.5822 0.9012 0.9005 0.9004 6.3994 16 2 10.4314 1.001
0.1509 34.0 1258 1.5924 0.9013 0.9008 0.9006 6.4084 16 2 10.4655 1.1011
0.1408 35.0 1295 1.6045 0.9028 0.9024 0.9021 6.4074 16 2 10.4845 1.2012
0.1487 36.0 1332 1.6133 0.9014 0.9012 0.9008 6.4244 16 2 10.4775 1.001
0.1444 37.0 1369 1.6157 0.9016 0.9016 0.9012 6.4304 16 2 10.5045 1.2012
0.1418 38.0 1406 1.6105 0.9012 0.9011 0.9006 6.4084 16 2 10.4615 1.1011
0.1402 39.0 1443 1.6116 0.9017 0.9015 0.9011 6.3894 16 2 10.4494 1.1011
0.1375 40.0 1480 1.6126 0.9015 0.9014 0.901 6.4004 16 2 10.4705 1.1011

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ldos/text_shortening_model_v73

Base model

google-t5/t5-small
Finetuned
(1488)
this model