Edit model card

text_shortening_model_v65

This model is a fine-tuned version of t5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1783
  • Bert precision: 0.8964
  • Bert recall: 0.8977
  • Bert f1-score: 0.8966
  • Average word count: 6.4565
  • Max word count: 16
  • Min word count: 2
  • Average token count: 10.5686
  • % shortened texts with length > 12: 2.002

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Bert precision Bert recall Bert f1-score Average word count Max word count Min word count Average token count % shortened texts with length > 12
1.7747 1.0 146 1.3200 0.8806 0.8825 0.881 6.7818 18 2 10.6827 2.1021
1.3684 2.0 292 1.2106 0.8857 0.8858 0.8852 6.5335 18 2 10.4835 1.7017
1.2448 3.0 438 1.1635 0.8862 0.8883 0.8868 6.6246 18 1 10.6817 2.1021
1.1406 4.0 584 1.1386 0.8897 0.8923 0.8905 6.6697 18 2 10.6767 2.2022
1.0623 5.0 730 1.1373 0.889 0.893 0.8905 6.6897 18 2 10.7568 1.5015
1.0034 6.0 876 1.1111 0.8923 0.8953 0.8933 6.5876 18 2 10.6927 1.7017
0.9391 7.0 1022 1.1037 0.8927 0.8947 0.8932 6.5455 18 2 10.6196 1.3013
0.8868 8.0 1168 1.0997 0.8949 0.8959 0.895 6.4805 18 2 10.5836 1.4014
0.8443 9.0 1314 1.1011 0.8939 0.8965 0.8947 6.5626 18 2 10.6386 1.5015
0.8117 10.0 1460 1.0997 0.8957 0.8981 0.8965 6.4865 16 2 10.6066 1.001
0.7844 11.0 1606 1.1153 0.8976 0.8979 0.8973 6.4404 18 2 10.5345 1.5015
0.7593 12.0 1752 1.1126 0.8946 0.8988 0.8962 6.6356 18 2 10.7698 1.9019
0.7249 13.0 1898 1.1047 0.8968 0.8991 0.8975 6.5335 16 2 10.6396 1.4014
0.7048 14.0 2044 1.1127 0.8961 0.8984 0.8968 6.5275 16 2 10.6336 1.4014
0.6828 15.0 2190 1.1237 0.8965 0.8982 0.8969 6.4675 16 2 10.5906 1.7017
0.6558 16.0 2336 1.1221 0.8975 0.8972 0.8969 6.3634 16 1 10.4985 1.2012
0.6296 17.0 2482 1.1296 0.8962 0.8982 0.8968 6.4775 16 1 10.6496 1.9019
0.6304 18.0 2628 1.1334 0.8981 0.898 0.8976 6.3724 16 1 10.4755 1.6016
0.6124 19.0 2774 1.1463 0.898 0.9006 0.8989 6.5075 15 2 10.6246 1.5015
0.6001 20.0 2920 1.1547 0.8982 0.8997 0.8984 6.4925 16 2 10.5766 1.9019
0.5834 21.0 3066 1.1551 0.8972 0.8973 0.8967 6.3323 16 2 10.4705 1.7017
0.5707 22.0 3212 1.1687 0.897 0.899 0.8976 6.4665 16 2 10.6026 1.7017
0.5667 23.0 3358 1.1656 0.8965 0.8981 0.8968 6.4585 16 2 10.5726 2.002
0.5519 24.0 3504 1.1747 0.8968 0.8984 0.8971 6.4885 16 2 10.5616 2.1021
0.5538 25.0 3650 1.1754 0.8967 0.8983 0.897 6.4735 16 2 10.5676 2.002
0.5403 26.0 3796 1.1734 0.8968 0.8983 0.8971 6.4835 16 2 10.6036 1.9019
0.5371 27.0 3942 1.1735 0.8964 0.8982 0.8968 6.4865 16 2 10.5696 2.1021
0.5381 28.0 4088 1.1767 0.8968 0.8982 0.897 6.4735 16 2 10.5926 1.9019
0.5278 29.0 4234 1.1771 0.8966 0.8975 0.8966 6.4454 16 2 10.5556 2.002
0.5249 30.0 4380 1.1783 0.8964 0.8977 0.8966 6.4565 16 2 10.5686 2.002

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ldos/text_shortening_model_v65

Base model

google-t5/t5-small
Finetuned
(1488)
this model