Edit model card

text_shortening_model_v18

This model is a fine-tuned version of t5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7863
  • Rouge1: 0.6984
  • Rouge2: 0.3313
  • Rougel: 0.4652
  • Rougelsum: 0.6832
  • Bert precision: 0.8799
  • Bert recall: 0.8838
  • Average word count: 1610.0
  • Max word count: 1610
  • Min word count: 1610
  • Average token count: 16.8143
  • % shortened texts with length > 12: 100.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Bert precision Bert recall Average word count Max word count Min word count Average token count % shortened texts with length > 12
1.195 1.0 62 1.7863 0.6984 0.3313 0.4652 0.6832 0.8799 0.8838 1610.0 1610 1610 16.8143 100.0

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ldos/text_shortening_model_v18

Base model

google-t5/t5-small
Finetuned
(1525)
this model