Edit model card

text_shortening_model_v10

This model is a fine-tuned version of t5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7343
  • Rouge1: 0.5944
  • Rouge2: 0.3803
  • Rougel: 0.5562
  • Rougelsum: 0.5556
  • Bert precision: 0.8982
  • Bert recall: 0.9028
  • Average word count: 11.1571
  • Max word count: 16
  • Min word count: 7
  • Average token count: 16.4
  • % shortened texts with length > 12: 22.1429

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Bert precision Bert recall Average word count Max word count Min word count Average token count % shortened texts with length > 12
2.1519 1.0 16 1.6818 0.5512 0.3185 0.4947 0.4946 0.8804 0.8891 11.8643 18 5 17.0071 45.7143
1.824 2.0 32 1.5909 0.5691 0.3406 0.5167 0.5163 0.8858 0.8957 11.8714 18 3 16.8429 47.1429
1.6784 3.0 48 1.5260 0.582 0.3562 0.5308 0.5295 0.8871 0.8997 12.0214 18 4 17.0929 47.1429
1.5584 4.0 64 1.4877 0.5749 0.3431 0.5258 0.5249 0.8878 0.8996 11.8 17 6 16.9786 42.1429
1.4831 5.0 80 1.4597 0.5849 0.3527 0.5337 0.5329 0.8871 0.901 12.0071 17 6 17.2857 44.2857
1.4536 6.0 96 1.4384 0.587 0.3562 0.5375 0.536 0.8889 0.9015 11.8929 16 6 17.2071 41.4286
1.3631 7.0 112 1.4238 0.5928 0.3616 0.5438 0.5434 0.89 0.9024 11.7643 16 7 17.1 40.0
1.285 8.0 128 1.4128 0.5876 0.3566 0.5364 0.5355 0.8898 0.9008 11.55 16 6 16.9286 36.4286
1.2515 9.0 144 1.4009 0.5953 0.3631 0.5444 0.5436 0.8913 0.9015 11.6286 16 6 16.9857 36.4286
1.2159 10.0 160 1.3975 0.5898 0.3583 0.54 0.5398 0.8915 0.9017 11.5714 16 6 16.9643 33.5714
1.1865 11.0 176 1.3955 0.5977 0.3641 0.5465 0.5457 0.8933 0.9034 11.4857 16 6 16.7643 32.8571
1.1476 12.0 192 1.3925 0.5903 0.3584 0.5436 0.5429 0.8906 0.9026 11.6571 17 7 17.0 34.2857
1.1196 13.0 208 1.3878 0.5972 0.3667 0.5482 0.5471 0.8935 0.9036 11.4857 16 6 16.7643 33.5714
1.0767 14.0 224 1.3949 0.5978 0.3687 0.5481 0.5474 0.8946 0.9041 11.45 16 6 16.7643 32.1429
1.0343 15.0 240 1.3930 0.6013 0.3776 0.5547 0.5544 0.8961 0.9046 11.4357 16 6 16.6714 30.0
1.0302 16.0 256 1.3959 0.597 0.3702 0.5453 0.5446 0.8921 0.9057 11.75 17 6 17.2071 34.2857
1.0251 17.0 272 1.3876 0.5999 0.3752 0.5524 0.5519 0.893 0.9061 11.7429 16 6 17.1643 34.2857
0.9773 18.0 288 1.3929 0.6002 0.3724 0.5463 0.5462 0.8946 0.9041 11.4929 16 6 16.7929 30.7143
0.9437 19.0 304 1.3921 0.6038 0.3824 0.5555 0.5553 0.897 0.9053 11.2857 16 6 16.5571 27.8571
0.9267 20.0 320 1.4016 0.6046 0.3774 0.5542 0.554 0.8923 0.9048 11.8429 16 7 17.1929 35.7143
0.9178 21.0 336 1.4047 0.6054 0.3775 0.5553 0.5545 0.8957 0.9056 11.5429 16 4 16.8643 29.2857
0.8941 22.0 352 1.4112 0.6039 0.3775 0.5556 0.555 0.8937 0.9052 11.6143 17 4 17.0 29.2857
0.8715 23.0 368 1.4156 0.602 0.3811 0.5552 0.5548 0.8947 0.9057 11.4929 16 6 16.8714 27.8571
0.847 24.0 384 1.4283 0.6013 0.3771 0.5516 0.5509 0.8935 0.905 11.5071 16 6 16.9571 30.0
0.8319 25.0 400 1.4349 0.5991 0.3747 0.5525 0.5519 0.8951 0.9049 11.3 16 6 16.7857 27.1429
0.8081 26.0 416 1.4421 0.6014 0.3797 0.5529 0.5528 0.8946 0.9056 11.5 16 6 16.9071 30.0
0.8098 27.0 432 1.4406 0.6038 0.3811 0.5546 0.5543 0.8965 0.9053 11.3429 16 6 16.6786 28.5714
0.7738 28.0 448 1.4544 0.5993 0.3774 0.5544 0.5535 0.8951 0.9042 11.3 17 5 16.7429 25.7143
0.7651 29.0 464 1.4711 0.6024 0.383 0.5573 0.5568 0.8979 0.9053 11.15 17 6 16.4357 22.1429
0.7495 30.0 480 1.4666 0.6066 0.3842 0.5609 0.5597 0.8979 0.9065 11.1643 16 5 16.6429 21.4286
0.7216 31.0 496 1.4779 0.6009 0.3801 0.5555 0.5549 0.8968 0.9048 11.2643 16 6 16.7143 25.7143
0.7074 32.0 512 1.4918 0.6 0.3792 0.5547 0.5537 0.8959 0.9041 11.3 16 7 16.7643 26.4286
0.7241 33.0 528 1.4914 0.6029 0.3859 0.5606 0.5596 0.8984 0.9044 11.1071 16 7 16.4857 20.7143
0.7001 34.0 544 1.4851 0.6035 0.3831 0.5591 0.5584 0.8971 0.9044 11.25 16 7 16.65 26.4286
0.6863 35.0 560 1.4942 0.6001 0.3818 0.556 0.5551 0.8961 0.902 11.2429 16 7 16.6214 25.7143
0.6724 36.0 576 1.4976 0.5958 0.3721 0.5496 0.5493 0.8959 0.9018 11.2143 16 7 16.5429 25.0
0.6652 37.0 592 1.5006 0.5976 0.3714 0.5522 0.5513 0.8964 0.9018 11.1071 16 7 16.4714 22.8571
0.6326 38.0 608 1.5064 0.6013 0.3802 0.5573 0.5563 0.8975 0.9017 11.0643 16 7 16.3071 22.1429
0.6408 39.0 624 1.5209 0.5969 0.3797 0.5557 0.555 0.8947 0.9025 11.35 16 7 16.6 27.8571
0.6209 40.0 640 1.5194 0.599 0.3773 0.5547 0.5538 0.8961 0.9036 11.35 16 7 16.6429 27.1429
0.6094 41.0 656 1.5285 0.6076 0.3917 0.5677 0.5667 0.9002 0.9064 11.1071 16 7 16.35 21.4286
0.6007 42.0 672 1.5403 0.607 0.3844 0.5657 0.5646 0.8991 0.9052 11.2214 15 6 16.3714 22.1429
0.5916 43.0 688 1.5546 0.5991 0.3768 0.5608 0.5602 0.8964 0.9044 11.3857 15 7 16.7357 25.7143
0.5816 44.0 704 1.5533 0.5955 0.3687 0.556 0.5556 0.8959 0.9017 11.1857 15 7 16.5571 22.1429
0.5714 45.0 720 1.5604 0.6025 0.3785 0.5592 0.5589 0.8978 0.9037 11.2357 16 7 16.4786 22.8571
0.563 46.0 736 1.5673 0.6034 0.3795 0.5604 0.5598 0.8969 0.9027 11.3 16 7 16.5571 25.0
0.546 47.0 752 1.5723 0.6005 0.381 0.5595 0.5592 0.8979 0.9035 11.2714 17 7 16.4429 25.0
0.5386 48.0 768 1.5735 0.5942 0.3768 0.5541 0.554 0.898 0.9028 11.1929 16 7 16.3214 25.0
0.5489 49.0 784 1.5781 0.5923 0.372 0.5527 0.5531 0.8966 0.9017 11.1857 16 7 16.3643 24.2857
0.5267 50.0 800 1.5837 0.5928 0.3729 0.5519 0.5513 0.8966 0.9019 11.2786 17 7 16.3929 25.0
0.5274 51.0 816 1.5907 0.5974 0.3751 0.5586 0.558 0.8988 0.9029 11.1857 17 6 16.25 26.4286
0.5206 52.0 832 1.5964 0.5913 0.3673 0.5515 0.5515 0.8966 0.9014 11.2429 16 7 16.3857 25.0
0.4979 53.0 848 1.6073 0.59 0.3719 0.5546 0.555 0.8965 0.9012 11.1357 17 7 16.3143 22.8571
0.5007 54.0 864 1.6126 0.5923 0.3733 0.5561 0.5559 0.8961 0.9012 11.2643 17 7 16.4286 24.2857
0.5035 55.0 880 1.6188 0.5972 0.3749 0.5567 0.5567 0.8985 0.9024 11.0786 16 7 16.2143 20.7143
0.504 56.0 896 1.6320 0.5996 0.3776 0.5593 0.5597 0.8985 0.9038 11.1357 16 7 16.3143 21.4286
0.4908 57.0 912 1.6333 0.5941 0.3757 0.5552 0.5554 0.897 0.9034 11.1929 16 7 16.3857 23.5714
0.4748 58.0 928 1.6339 0.5968 0.3704 0.5541 0.554 0.8977 0.9025 11.1571 16 7 16.3786 23.5714
0.4751 59.0 944 1.6352 0.6006 0.3791 0.5601 0.5599 0.8988 0.9032 11.1214 17 7 16.3071 20.7143
0.474 60.0 960 1.6349 0.6006 0.3865 0.5618 0.5609 0.8987 0.9045 11.1786 17 7 16.3786 22.8571
0.4673 61.0 976 1.6357 0.5924 0.3756 0.5561 0.5559 0.8982 0.9024 11.0786 16 6 16.2 20.7143
0.4708 62.0 992 1.6488 0.5964 0.3833 0.5607 0.5602 0.8985 0.9043 11.2214 16 7 16.4143 25.0
0.4721 63.0 1008 1.6555 0.5949 0.3781 0.5569 0.5563 0.8966 0.9036 11.2643 16 7 16.5071 25.0
0.46 64.0 1024 1.6644 0.5955 0.3749 0.5536 0.5536 0.8982 0.903 11.1714 16 7 16.3286 20.7143
0.4469 65.0 1040 1.6648 0.5962 0.3791 0.558 0.5581 0.8968 0.9041 11.3714 16 7 16.5429 27.1429
0.4395 66.0 1056 1.6675 0.5912 0.3767 0.5526 0.5523 0.8976 0.903 11.2357 16 7 16.4071 22.8571
0.4363 67.0 1072 1.6699 0.5913 0.3747 0.5538 0.5533 0.8987 0.902 11.0 16 7 16.0786 19.2857
0.4313 68.0 1088 1.6751 0.5854 0.3666 0.5464 0.5452 0.897 0.9 10.9929 16 7 16.1071 20.0
0.4237 69.0 1104 1.6777 0.5956 0.3787 0.554 0.5535 0.8975 0.9024 11.2 16 7 16.3571 22.8571
0.4265 70.0 1120 1.6787 0.5907 0.3713 0.552 0.5516 0.8964 0.9011 11.1429 15 7 16.3286 20.7143
0.4219 71.0 1136 1.6846 0.5868 0.3699 0.5487 0.5481 0.895 0.9004 11.2357 15 7 16.4214 22.1429
0.4237 72.0 1152 1.6891 0.5895 0.3702 0.5506 0.5503 0.895 0.9013 11.2643 15 7 16.5071 24.2857
0.4146 73.0 1168 1.6914 0.5963 0.3772 0.5552 0.5548 0.8967 0.9019 11.2429 15 7 16.4357 22.1429
0.4103 74.0 1184 1.6948 0.5878 0.372 0.5496 0.549 0.8962 0.9006 11.2 16 7 16.3571 21.4286
0.4099 75.0 1200 1.6970 0.5932 0.3755 0.5566 0.5563 0.897 0.9021 11.2357 16 7 16.3286 22.8571
0.403 76.0 1216 1.6966 0.5922 0.3768 0.5545 0.5542 0.8987 0.9026 11.0857 16 7 16.2214 20.7143
0.3999 77.0 1232 1.6991 0.5946 0.3778 0.5549 0.5552 0.8986 0.9026 11.1 16 6 16.2286 21.4286
0.4176 78.0 1248 1.7002 0.5963 0.3783 0.5568 0.5571 0.8984 0.9032 11.1643 16 6 16.3286 23.5714
0.4007 79.0 1264 1.7038 0.5921 0.3729 0.553 0.5529 0.8976 0.9015 11.1071 16 6 16.2286 22.1429
0.3918 80.0 1280 1.7114 0.595 0.3745 0.5551 0.5544 0.8982 0.9021 11.1714 16 6 16.3071 22.1429
0.3936 81.0 1296 1.7153 0.5914 0.3724 0.5527 0.5524 0.8979 0.9014 11.0929 16 6 16.2286 21.4286
0.3997 82.0 1312 1.7154 0.5924 0.3755 0.5528 0.5527 0.8972 0.9021 11.2286 16 6 16.3571 23.5714
0.396 83.0 1328 1.7187 0.5943 0.3765 0.5552 0.5549 0.897 0.9029 11.3 16 6 16.4571 24.2857
0.4049 84.0 1344 1.7198 0.5958 0.3757 0.5555 0.5548 0.8972 0.9031 11.2929 16 6 16.4929 25.0
0.3983 85.0 1360 1.7201 0.5948 0.3776 0.558 0.5574 0.8974 0.9025 11.25 16 6 16.4286 24.2857
0.3936 86.0 1376 1.7211 0.5945 0.3764 0.5579 0.5572 0.8973 0.9028 11.2286 16 6 16.4143 24.2857
0.3847 87.0 1392 1.7211 0.5965 0.3808 0.5582 0.5583 0.8977 0.9032 11.1929 16 6 16.3857 24.2857
0.3979 88.0 1408 1.7227 0.5928 0.374 0.5552 0.555 0.8973 0.902 11.15 16 6 16.3286 22.8571
0.3851 89.0 1424 1.7262 0.5908 0.3731 0.5538 0.5532 0.8978 0.9016 11.1143 16 6 16.25 20.7143
0.3762 90.0 1440 1.7262 0.591 0.3726 0.5542 0.5536 0.8975 0.9017 11.1214 16 6 16.3 20.0
0.3752 91.0 1456 1.7250 0.5924 0.3756 0.5555 0.555 0.8969 0.902 11.2 16 6 16.3571 23.5714
0.3825 92.0 1472 1.7273 0.5905 0.3728 0.5542 0.5541 0.8968 0.9015 11.2357 16 6 16.3714 23.5714
0.3731 93.0 1488 1.7295 0.5916 0.373 0.5541 0.5536 0.8972 0.902 11.2143 16 7 16.4286 22.1429
0.3707 94.0 1504 1.7313 0.5928 0.3746 0.5548 0.5545 0.8975 0.9023 11.1786 16 7 16.3929 22.1429
0.3708 95.0 1520 1.7323 0.5919 0.3737 0.5536 0.5536 0.8972 0.9019 11.2071 16 7 16.4286 22.1429
0.372 96.0 1536 1.7334 0.5914 0.3737 0.5537 0.5536 0.8971 0.9019 11.2 16 7 16.4 22.1429
0.3754 97.0 1552 1.7339 0.5905 0.3733 0.5527 0.5521 0.8975 0.9018 11.1714 16 7 16.3857 21.4286
0.3829 98.0 1568 1.7342 0.5923 0.3779 0.5548 0.5545 0.8979 0.9025 11.1571 16 7 16.3786 22.1429
0.3723 99.0 1584 1.7343 0.5936 0.3795 0.5556 0.5549 0.8978 0.9026 11.1643 16 7 16.4 22.1429
0.3846 100.0 1600 1.7343 0.5944 0.3803 0.5562 0.5556 0.8982 0.9028 11.1571 16 7 16.4 22.1429

Framework versions

  • Transformers 4.33.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ldos/text_shortening_model_v10

Base model

google-t5/t5-small
Finetuned
(1525)
this model