PlatYi-34B-QLoRA
Model Details
Model Developers Kyujin Han (kyujinpy)
Input Models input text only.
Output Models generate text only.
Model Architecture
PlatYi-34B-QLoRA is an auto-regressive language model based on the Yi-34B transformer architecture.
Blog Link
Blog: [Coming soon...]
Github: [Coming soon...]
Base Model
01-ai/Yi-34B
Training Dataset
garage-bAInd/Open-Platypus.
Notice
While training, I used QLoRA.
But, lora_r
values is 16.
So, this model just testing.
Model Benchmark
Open leaderboard
- Follow up as link.
Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K |
---|---|---|---|---|---|---|---|
PlatYi-34B-Q | 69.86 | 66.89 | 85.14 | 77.66 | 53.03 | 82.48 | 53.98 |
01-ai/Yi-34B | 69.42 | 64.59 | 85.69 | 76.35 | 56.23 | 83.03 | 50.64 |
Implementation Code
### KO-Platypus
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
repo = "kyujinpy/PlatYi-34B-Q"
OpenOrca = AutoModelForCausalLM.from_pretrained(
repo,
return_dict=True,
torch_dtype=torch.float16,
device_map='auto'
)
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 69.86 |
AI2 Reasoning Challenge (25-Shot) | 66.89 |
HellaSwag (10-Shot) | 85.14 |
MMLU (5-Shot) | 77.66 |
TruthfulQA (0-shot) | 53.03 |
Winogrande (5-shot) | 82.48 |
GSM8k (5-shot) | 53.98 |
- Downloads last month
- 701
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for kyujinpy/PlatYi-34B-Q
Dataset used to train kyujinpy/PlatYi-34B-Q
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard66.890
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard85.140
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard77.660
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard53.030
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard82.480
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard53.980