lilt-en-funsd

This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on the funsd-layoutlmv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4588
  • Answer: {'precision': 0.8786057692307693, 'recall': 0.8947368421052632, 'f1': 0.88659793814433, 'number': 817}
  • Header: {'precision': 0.6442307692307693, 'recall': 0.5630252100840336, 'f1': 0.600896860986547, 'number': 119}
  • Question: {'precision': 0.8854351687388987, 'recall': 0.9257195914577531, 'f1': 0.9051293690422152, 'number': 1077}
  • Overall Precision: 0.8705
  • Overall Recall: 0.8917
  • Overall F1: 0.8810
  • Overall Accuracy: 0.8222

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
0.4177 10.53 200 0.9741 {'precision': 0.834106728538283, 'recall': 0.8800489596083231, 'f1': 0.8564621798689696, 'number': 817} {'precision': 0.6363636363636364, 'recall': 0.4117647058823529, 'f1': 0.5, 'number': 119} {'precision': 0.8831985624438454, 'recall': 0.9127205199628597, 'f1': 0.897716894977169, 'number': 1077} 0.8533 0.8698 0.8615 0.8139
0.0528 21.05 400 1.2793 {'precision': 0.8391845979614949, 'recall': 0.9069767441860465, 'f1': 0.871764705882353, 'number': 817} {'precision': 0.5480769230769231, 'recall': 0.4789915966386555, 'f1': 0.5112107623318385, 'number': 119} {'precision': 0.878645343367827, 'recall': 0.8672237697307336, 'f1': 0.8728971962616822, 'number': 1077} 0.8449 0.8604 0.8526 0.8057
0.0154 31.58 600 1.3635 {'precision': 0.8705463182897862, 'recall': 0.8971848225214198, 'f1': 0.8836648583484027, 'number': 817} {'precision': 0.6428571428571429, 'recall': 0.5294117647058824, 'f1': 0.5806451612903226, 'number': 119} {'precision': 0.8776041666666666, 'recall': 0.9387186629526463, 'f1': 0.9071332436069988, 'number': 1077} 0.8638 0.8977 0.8804 0.8164
0.0082 42.11 800 1.4185 {'precision': 0.8700361010830325, 'recall': 0.8849449204406364, 'f1': 0.8774271844660194, 'number': 817} {'precision': 0.6428571428571429, 'recall': 0.6050420168067226, 'f1': 0.6233766233766234, 'number': 119} {'precision': 0.8921124206708976, 'recall': 0.9136490250696379, 'f1': 0.9027522935779816, 'number': 1077} 0.8695 0.8838 0.8766 0.8212
0.0038 52.63 1000 1.4588 {'precision': 0.8786057692307693, 'recall': 0.8947368421052632, 'f1': 0.88659793814433, 'number': 817} {'precision': 0.6442307692307693, 'recall': 0.5630252100840336, 'f1': 0.600896860986547, 'number': 119} {'precision': 0.8854351687388987, 'recall': 0.9257195914577531, 'f1': 0.9051293690422152, 'number': 1077} 0.8705 0.8917 0.8810 0.8222
0.0026 63.16 1200 1.5730 {'precision': 0.8666666666666667, 'recall': 0.8910648714810282, 'f1': 0.8786964393482196, 'number': 817} {'precision': 0.7073170731707317, 'recall': 0.48739495798319327, 'f1': 0.5771144278606964, 'number': 119} {'precision': 0.8887884267631103, 'recall': 0.9127205199628597, 'f1': 0.9005955107650022, 'number': 1077} 0.8723 0.8788 0.8755 0.8139
0.0015 73.68 1400 1.6294 {'precision': 0.837471783295711, 'recall': 0.9082007343941249, 'f1': 0.8714034057545508, 'number': 817} {'precision': 0.6530612244897959, 'recall': 0.5378151260504201, 'f1': 0.5898617511520737, 'number': 119} {'precision': 0.9039179104477612, 'recall': 0.8997214484679665, 'f1': 0.9018147975802697, 'number': 1077} 0.8633 0.8818 0.8725 0.8173
0.001 84.21 1600 1.6406 {'precision': 0.8434684684684685, 'recall': 0.9167686658506732, 'f1': 0.8785923753665689, 'number': 817} {'precision': 0.6260869565217392, 'recall': 0.6050420168067226, 'f1': 0.6153846153846154, 'number': 119} {'precision': 0.9001865671641791, 'recall': 0.8960074280408542, 'f1': 0.8980921358771522, 'number': 1077} 0.8607 0.8872 0.8738 0.8140
0.0006 94.74 1800 1.6743 {'precision': 0.8525714285714285, 'recall': 0.9130966952264382, 'f1': 0.8817966903073285, 'number': 817} {'precision': 0.6666666666666666, 'recall': 0.5042016806722689, 'f1': 0.5741626794258373, 'number': 119} {'precision': 0.8982584784601283, 'recall': 0.9099350046425255, 'f1': 0.904059040590406, 'number': 1077} 0.8687 0.8872 0.8779 0.8082
0.0003 105.26 2000 1.7003 {'precision': 0.8696682464454977, 'recall': 0.8984088127294981, 'f1': 0.8838049367850691, 'number': 817} {'precision': 0.6404494382022472, 'recall': 0.4789915966386555, 'f1': 0.548076923076923, 'number': 119} {'precision': 0.8927272727272727, 'recall': 0.9117920148560817, 'f1': 0.9021589343132751, 'number': 1077} 0.8721 0.8808 0.8764 0.8110
0.0002 115.79 2200 1.7767 {'precision': 0.8564867967853043, 'recall': 0.9130966952264382, 'f1': 0.8838862559241707, 'number': 817} {'precision': 0.64, 'recall': 0.5378151260504201, 'f1': 0.5844748858447488, 'number': 119} {'precision': 0.9077212806026366, 'recall': 0.8950789229340761, 'f1': 0.9013557737260401, 'number': 1077} 0.8726 0.8813 0.8769 0.8004
0.0002 126.32 2400 1.7093 {'precision': 0.8546910755148741, 'recall': 0.9143206854345165, 'f1': 0.8835008870490834, 'number': 817} {'precision': 0.6413043478260869, 'recall': 0.4957983193277311, 'f1': 0.5592417061611374, 'number': 119} {'precision': 0.8956602031394275, 'recall': 0.9006499535747446, 'f1': 0.8981481481481481, 'number': 1077} 0.8668 0.8823 0.8744 0.8027

Framework versions

  • Transformers 4.28.1
  • Pytorch 1.13.1+cu117
  • Datasets 2.11.0
  • Tokenizers 0.13.3
Downloads last month
7
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.