Supported Labels
['Abstract_Expressionism', 'Action_painting', 'Analytical_Cubism', 'Art_Nouveau_Modern', 'Baroque', 'Color_Field_Painting', 'Contemporary_Realism', 'Cubism', 'Early_Renaissance', 'Expressionism', 'Fauvism', 'High_Renaissance', 'Impressionism', 'Mannerism_Late_Renaissance', 'Minimalism', 'Naive_Art_Primitivism', 'New_Realism', 'Northern_Renaissance', 'Pointillism', 'Pop_Art', 'Post_Impressionism', 'Realism', 'Rococo', 'Romanticism', 'Symbolism', 'Synthetic_Cubism', 'Ukiyo_e']
How to use
- Install ultralyticsplus:
pip install ultralyticsplus==0.0.24 ultralytics==8.0.23
- Load model and perform prediction:
from ultralyticsplus import YOLO, postprocess_classify_output
# load model
model = YOLO('keremberke/yolov8m-painting-classification')
# set model parameters
model.overrides['conf'] = 0.25 # model confidence threshold
# set image
image = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'
# perform inference
results = model.predict(image)
# observe results
print(results[0].probs) # [0.1, 0.2, 0.3, 0.4]
processed_result = postprocess_classify_output(model, result=results[0])
print(processed_result) # {"cat": 0.4, "dog": 0.6}
More models available at: awesome-yolov8-models
- Downloads last month
- 4,196
Inference API (serverless) has been turned off for this model.
Dataset used to train keremberke/yolov8m-painting-classification
Evaluation results
- top1 accuracy on painting-style-classificationvalidation set self-reported0.057
- top5 accuracy on painting-style-classificationvalidation set self-reported0.215